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number of agents. For example, in the edge caching context,
the limited-bandwidth restriction can be interpreted as the lim-
ited transmission capacity of network links. It remains an open
challenge to implement multi-agent communication in real-
world decentralized decision making systems, with practical
restrictions on transmitting messages among the agents.

Motivated by the need to support MARL in real-world
decision-making processes with bandwidth constraints in the
underlying communication network, in this paper, we explore
the design of a hybrid communication pattern that (1) involves
both intra-step and inter-step communication, (2) introduces
limited delays during agents’ decision making, and (3) incor-
porates both history and current knowledge into the shared
messages. To achieve these objectives, we propose a new
multi-agent communication framework for cooperative multi-
agent reinforcement learning in edge caching tasks, referred to
as Communicator with Successive Deep Neural Networks, or
CSNet. Our new framework combines specially designed deep
neural networks that adaptively convert local knowledge to
restricted-sized messages, together with neural networks that
selectively integrate shared messages into a piece of global
knowledge that is beneficial for the agents’ coordination and
learning. Agents in our framework are able to learn what
information should be shared, how global knowledge should
be understood, how history global knowledge should be kept
in local memory through a multi-agent deep reinforcement
learning process, with the objective of reducing the cost of
communication while maintaining the same level of perfor-
mance. Overall, we aim at improving each agent’s knowledge
about the dynamic environment while introducing limited
delays in agents’ decision making.

Our experimental results demonstrate that our communica-
tion strategy for multi-agent reinforcement learning, CSNet,
assists the efficient coordination across edge servers in wireless
edge caching. CSNet outperforms alternative MARL algo-
rithms with no communication [15] or with full observation
sharing [7] when they are applied to generating caching
policies, in terms of cache hits, transmission latency, and
replacement costs. Meanwhile, CSNet can save communica-
tion bandwidth up to 97.5% compared to the full observation
sharing.

II. COOPERATIVE EDGE CACHING
WITH MULTI-AGENT REINFORCEMENT LEARNING

A. System Model

We consider the edge caching model illustrated in Fig. 1.
Each edge server is located at the center of each wireless
network region, and is connected to the datacenter. Naturally,
we assume that each edge server has a limited caching
capacity, and can only cache a portion of the data stored
in the datacenter. The users are randomly distributed across
the network regions. At a particular time step, each user can
request one piece of data based on his or her preference from
the local edge server. Users make data requests from a finite
data set.

Backhaul link
BS-BS link
Data center server
Base station

User/Device 
Edge server

Fig. 1: Cooperative edge caching: system model.

The popularity distribution of data is assumed to be un-
known when making caching decisions. Hence, each edge
server serves the data requests from users within its coverage
area if the requested data can be found in its cache. Otherwise,
the edge server can request any locally uncached data from
neighboring edge servers. The worst case is that the requested
data can not be obtained at either the local cache or the
neighboring cache, and the edge server will fetch the data
from the datacenter. We assume that the edge server of each
user remains unchanged within each time step.

The entire data set F consists of F pieces of files. We
assume each piece of data as file f has a unique ID, and is
of the same size sf . There are E edge servers in the system,
among which every edge server i has a cache to store the
limited number of files. The cache can be regarded as memory
blocks, each block c is the same size as the file, and the total
cache size is denoted as Ci. And Ni denotes the neighboring
edge servers of i (located within a certain distance), which
can exchange cached data with i. The total number of users
distributed across the network regions is U .

Based on the system model presented above, we describe
the important metrics that we take into consideration when
designing the RL formulation and experimental evaluation.
The total hit ratio at an edge server i is calculated as the
total number of cache hits, including local and neighbor cache
hits, to the total number of cache requests in the given period.
Alternatively, the total hit ratio can be represented as the sum
of the local hit ratio LocalHRi and the neighbor hit ratio
NeighborHRi. Note that the neighbor cache hits increment if
the requested data is not available at the local cache but can
be found at any one of the neighbor cache. The replacement
ratio RRi is calculated as the ratio of the total number of file
replacements occurred in the cache over the total number of
files that could be held in the cache in a given period.

According to the Shannon-Hartley theorem, we can calcu-
late the maximum transmission rate rl on a link l between a
user and its associated edge server as rl = Bl ·log2(1+SNRl),
where B is the allocated channel bandwidth of the link.
The SNRl represents the signal-to-noise ratio on the link l,
determined by the server’s transmission power, the path loss,
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Fig. 2: Multi-agent reinforcement learning with communica-
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istic policy gradient (MADDPG) model [15], which will be
referred to as the no communication scheme, we are able to
support efficient message sharing by involving both intra-step
and inter-step communication.

Deriving knowledge from the actor. It is essential to
decide what information to exchange between multiple agents.
Sharing observations and/or behavior policies of all agents
with every other agent [5], [7] requires a significant amount of
data transmission overhead in real-world applications. Since a
large amount of information needs to be aggregated at each
agent, the ensuing communication costs could be prohibitive.
In addition, informing all the agents of what other agents
observe and how they behave could overwhelm each of the
agents [20]. This kind of information sharing is not only
devoid of value, but also detrimental to the learning process
of the entire system, especially for agents who have different
capacities of observability or heterogeneous policies.

To transfer knowledge that is not only cheaper to transmit
but also easier to digest for agents, we seek a higher-level
representation of both local perceptions and action intentions
rather than raw observations or behavior policies. In our
design, as shown in Fig. 2, information sharing among agents
takes place as we generate actions from observations according
to current policies. We split the actor network into two parts, in
which the first part — the Actor Head ⇡h

i — outputs the hidden
state ht

i that can be seen as a feature of the local observation
oti at each time step. The Actor Head comprises two fully
connected (FC) layers with ReLU as the activation function.
We use the hidden state ht

i as a piece of information that the
agent owns locally.

Message compression. As the initial message ht
i is the

immediate output of the first part of the actor neural network,
it could still be inefficient to send them out directly through
the communication channels. Therefore, to reduce the volume
of traffic used by the agents’ messages, we compress it by
feeding it into a Message Encoder, fenc

i . The message encoder

is a fully connected layer with parameters ✓ei , which reduces
the dimensionality of the immediate output to a high-level
message. Hence, the message to be sent by each agent i at
step t can be written as

m ht
i = fenc

i (ht
i). (2)

The length of message m ht
i is adjustable by the output size

of the encoder. Despite the fact that agents are communicat-
ing during execution, the incurred message transmission cost
and latency are reduced to the minimum using the message
encoder.

Message integration. The agents share their encoded local
messages {m ht

1, ...,m ht
N} at each time step t through a

shared communication channel. The shared information will
be integrated into a global message m at, and then broadcast
to each agent i. The second part of the actor network at each
agent, the Actor Tail ⇡a

i , takes the local hidden states ht
i and

the global message m at as input, and generates the next
action ati. The Actor Tail is a fully connected layer. The output
of the common communicator is given by

f com
(M ht

) =: f com
(m ht

1,m ht
2, ...,m ht

N ) = m at.
(3)

It is vital to effectively integrate the collected information
sent by each agent into a useful global message that is valuable
for the coordination and learning of the entire group. Intu-
itively, we first examined several message integration methods
such as taking the average value of all the local message
vectors, or simply concatenating the message vectors sequen-
tially. However, these two naı̈ve designs are not able to satisfy
our need for adaptively differentiating the values of different
messages, and aggregating them with different weights. Pieces
of information of high importance may get mitigated, or even
worse, there may be redundant or unnecessary information
in the messages. For this reason, we further employ a new
neural network as an alternative to implement the message
integration component, referred to as the Deep Communicator.
Instead of using a fixed mapping, the Deep Communicator
adopts a recurrent neural network with parameters ✓c to take
in the messages from each agent sequentially, and adaptively
generate a broadcast message of a reduced size. It retains its
own memory across the training steps and keeps learning what
is important to be shared with the agents.

Message memory. The message m a described above are
generated, sent, and received during each single step, from
observing the environment to applying the next action, and
thus only incorporate information available within each step.
Apart from this message fed into the Actor Tail that indicates
the action intention of the group of agents, our design also
involves a self-updating message m oi aimed at informing
the agents of history knowledge besides the local observation.
That is, each agent retains a memory fmem

i of previous global
messages from the group of agents, which enables the agent to
sense the world more than its next observation. The memory
component fmem

i is a fully connected layer with parameters

Our Design: Hybrid Communication
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istic policy gradient (MADDPG) model [15], which will be
referred to as the no communication scheme, we are able to
support efficient message sharing by involving both intra-step
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Deriving knowledge from the actor. It is essential to
decide what information to exchange between multiple agents.
Sharing observations and/or behavior policies of all agents
with every other agent [5], [7] requires a significant amount of
data transmission overhead in real-world applications. Since a
large amount of information needs to be aggregated at each
agent, the ensuing communication costs could be prohibitive.
In addition, informing all the agents of what other agents
observe and how they behave could overwhelm each of the
agents [20]. This kind of information sharing is not only
devoid of value, but also detrimental to the learning process
of the entire system, especially for agents who have different
capacities of observability or heterogeneous policies.

To transfer knowledge that is not only cheaper to transmit
but also easier to digest for agents, we seek a higher-level
representation of both local perceptions and action intentions
rather than raw observations or behavior policies. In our
design, as shown in Fig. 2, information sharing among agents
takes place as we generate actions from observations according
to current policies. We split the actor network into two parts, in
which the first part — the Actor Head ⇡h

i — outputs the hidden
state ht

i that can be seen as a feature of the local observation
oti at each time step. The Actor Head comprises two fully
connected (FC) layers with ReLU as the activation function.
We use the hidden state ht

i as a piece of information that the
agent owns locally.

Message compression. As the initial message ht
i is the

immediate output of the first part of the actor neural network,
it could still be inefficient to send them out directly through
the communication channels. Therefore, to reduce the volume
of traffic used by the agents’ messages, we compress it by
feeding it into a Message Encoder, fenc

i . The message encoder

is a fully connected layer with parameters ✓ei , which reduces
the dimensionality of the immediate output to a high-level
message. Hence, the message to be sent by each agent i at
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i). (2)

The length of message m ht
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of the encoder. Despite the fact that agents are communicat-
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and latency are reduced to the minimum using the message
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1, ...,m ht
N} at each time step t through a
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be integrated into a global message m at, and then broadcast
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It is vital to effectively integrate the collected information
sent by each agent into a useful global message that is valuable
for the coordination and learning of the entire group. Intu-
itively, we first examined several message integration methods
such as taking the average value of all the local message
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messages, and aggregating them with different weights. Pieces
of information of high importance may get mitigated, or even
worse, there may be redundant or unnecessary information
in the messages. For this reason, we further employ a new
neural network as an alternative to implement the message
integration component, referred to as the Deep Communicator.
Instead of using a fixed mapping, the Deep Communicator
adopts a recurrent neural network with parameters ✓c to take
in the messages from each agent sequentially, and adaptively
generate a broadcast message of a reduced size. It retains its
own memory across the training steps and keeps learning what
is important to be shared with the agents.

Message memory. The message m a described above are
generated, sent, and received during each single step, from
observing the environment to applying the next action, and
thus only incorporate information available within each step.
Apart from this message fed into the Actor Tail that indicates
the action intention of the group of agents, our design also
involves a self-updating message m oi aimed at informing
the agents of history knowledge besides the local observation.
That is, each agent retains a memory fmem

i of previous global
messages from the group of agents, which enables the agent to
sense the world more than its next observation. The memory
component fmem

i is a fully connected layer with parameters
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istic policy gradient (MADDPG) model [15], which will be
referred to as the no communication scheme, we are able to
support efficient message sharing by involving both intra-step
and inter-step communication.

Deriving knowledge from the actor. It is essential to
decide what information to exchange between multiple agents.
Sharing observations and/or behavior policies of all agents
with every other agent [5], [7] requires a significant amount of
data transmission overhead in real-world applications. Since a
large amount of information needs to be aggregated at each
agent, the ensuing communication costs could be prohibitive.
In addition, informing all the agents of what other agents
observe and how they behave could overwhelm each of the
agents [20]. This kind of information sharing is not only
devoid of value, but also detrimental to the learning process
of the entire system, especially for agents who have different
capacities of observability or heterogeneous policies.

To transfer knowledge that is not only cheaper to transmit
but also easier to digest for agents, we seek a higher-level
representation of both local perceptions and action intentions
rather than raw observations or behavior policies. In our
design, as shown in Fig. 2, information sharing among agents
takes place as we generate actions from observations according
to current policies. We split the actor network into two parts, in
which the first part — the Actor Head ⇡h

i — outputs the hidden
state ht

i that can be seen as a feature of the local observation
oti at each time step. The Actor Head comprises two fully
connected (FC) layers with ReLU as the activation function.
We use the hidden state ht

i as a piece of information that the
agent owns locally.

Message compression. As the initial message ht
i is the

immediate output of the first part of the actor neural network,
it could still be inefficient to send them out directly through
the communication channels. Therefore, to reduce the volume
of traffic used by the agents’ messages, we compress it by
feeding it into a Message Encoder, fenc

i . The message encoder

is a fully connected layer with parameters ✓ei , which reduces
the dimensionality of the immediate output to a high-level
message. Hence, the message to be sent by each agent i at
step t can be written as

m ht
i = fenc

i (ht
i). (2)

The length of message m ht
i is adjustable by the output size

of the encoder. Despite the fact that agents are communicat-
ing during execution, the incurred message transmission cost
and latency are reduced to the minimum using the message
encoder.

Message integration. The agents share their encoded local
messages {m ht

1, ...,m ht
N} at each time step t through a

shared communication channel. The shared information will
be integrated into a global message m at, and then broadcast
to each agent i. The second part of the actor network at each
agent, the Actor Tail ⇡a

i , takes the local hidden states ht
i and

the global message m at as input, and generates the next
action ati. The Actor Tail is a fully connected layer. The output
of the common communicator is given by

f com
(M ht

) =: f com
(m ht

1,m ht
2, ...,m ht

N ) = m at.
(3)

It is vital to effectively integrate the collected information
sent by each agent into a useful global message that is valuable
for the coordination and learning of the entire group. Intu-
itively, we first examined several message integration methods
such as taking the average value of all the local message
vectors, or simply concatenating the message vectors sequen-
tially. However, these two naı̈ve designs are not able to satisfy
our need for adaptively differentiating the values of different
messages, and aggregating them with different weights. Pieces
of information of high importance may get mitigated, or even
worse, there may be redundant or unnecessary information
in the messages. For this reason, we further employ a new
neural network as an alternative to implement the message
integration component, referred to as the Deep Communicator.
Instead of using a fixed mapping, the Deep Communicator
adopts a recurrent neural network with parameters ✓c to take
in the messages from each agent sequentially, and adaptively
generate a broadcast message of a reduced size. It retains its
own memory across the training steps and keeps learning what
is important to be shared with the agents.

Message memory. The message m a described above are
generated, sent, and received during each single step, from
observing the environment to applying the next action, and
thus only incorporate information available within each step.
Apart from this message fed into the Actor Tail that indicates
the action intention of the group of agents, our design also
involves a self-updating message m oi aimed at informing
the agents of history knowledge besides the local observation.
That is, each agent retains a memory fmem

i of previous global
messages from the group of agents, which enables the agent to
sense the world more than its next observation. The memory
component fmem

i is a fully connected layer with parameters
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Fig. 3: The latency, cache hit ratio, replacement ratio of different policies under varying cache capacities.
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Fig. 4: The average hit ratio and latency of different message
size under 4% cache capacity.

✓mi . The message m oti generated at the end of the step t will
be fed into the Actor Head along with the new observation oti
at the next step t+1. The message flow through the memory
component can be expressed as

m oti = fmem
i (m at,m ot�1

i ). (4)

In our CSNet design, the aggregated actor network, message
encoder, message memory and Deep Communicator work
together to encode and integrate the local messages m h,
decode the global messages m a, and produce the actions.
Specifically, the gradients flow back through Actor Tail ⇡a,
the Deep Communicator f com, the message memory fmem

i ,
the message encoder fenc

i , and Actor Head ⇡h for each agent.
As the common message integration component, the Deep
Communicator is trained jointly by incorporating the partial
gradients contributed by each agent. Therefore, the gradient
in Eq. (1) can be extended as Eq. (5), and the gradient
for updating parameters in the Deep Communicator can be
expressed as Eq. (6), where the state distribution ⇢⇡ is derived
from the replay buffer.

r✓iJ(✓i) = Eo⇠⇢⇡,a⇠⇡✓i
[r✓i⇡✓i(oi,M) ·raiQ

⇡
(o,a)] (5)

r✓cJ(✓c) = Eo⇠⇢⇡,a⇠⇡✓i
[r✓cM(enc m1, ..., enc mN ; ✓c)

·rM⇡✓i(oi,M) ·raiQ
⇡
(o,a)] (6)

IV. EXPERIMENTAL EVALUATIONS

In this section, we present experimental results and analyze
the performance of our approach compared to several baselines
in the edge caching environment, where we investigate the
bandwidth efficiency of our approach in a real-world applica-
tion. The baseline approaches are described below.

No Communication (MADDPG): This is introduced
in [15], MADDPG has a central critic network for all agents,
but does not have a process of generating and integrating
messages. Since our approach is developed from the basic
framework of MADDPG, comparing with it is similar to an
ablation study of no communication.

Full Sharing: This model directly uses the full observations
of each agent as the message shared with every other agent,
derived from recent works [7]. This will help us understand
the bandwidth efficiency of our method in a comparison study.

Rule-based algorithms: We will also compare with the
least recently used (LRU) and least frequently used (LFU)
caching policies in the edge caching environment.

CSNet achieves better performance. To test the caching
performance of the trained model, we compare CSNet with
two rule-based caching strategies, LRU and LFU, apart from
the learning-based ones. There are U = 500 users, F = 200

files, E = 5 agents, and the number of neighboring edge
servers is N = [2, 3, 1, 2, 2] due to different distances between
them.

We evaluate on a range of cache capacities, with the capacity
of each edge’s cache ranging from 4% to 15% of F . Fig. 3
show the performance results that are averaged across all
agents over 10 runs, each lasts 1000 time steps.

In Fig. 3b, the higher and lower lines of the filled area
depict the total hit ratio and the neighbor hit ratio respectively.
We observe that as the cache capacity grows, the hit ratio
including the neighbor hit ratio increases. This phenomenon
can be explained by the fact that edges with a larger cache size
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component can be expressed as
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In our CSNet design, the aggregated actor network, message
encoder, message memory and Deep Communicator work
together to encode and integrate the local messages m h,
decode the global messages m a, and produce the actions.
Specifically, the gradients flow back through Actor Tail ⇡a,
the Deep Communicator f com, the message memory fmem

i ,
the message encoder fenc

i , and Actor Head ⇡h for each agent.
As the common message integration component, the Deep
Communicator is trained jointly by incorporating the partial
gradients contributed by each agent. Therefore, the gradient
in Eq. (1) can be extended as Eq. (5), and the gradient
for updating parameters in the Deep Communicator can be
expressed as Eq. (6), where the state distribution ⇢⇡ is derived
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the performance of our approach compared to several baselines
in the edge caching environment, where we investigate the
bandwidth efficiency of our approach in a real-world applica-
tion. The baseline approaches are described below.

No Communication (MADDPG): This is introduced
in [15], MADDPG has a central critic network for all agents,
but does not have a process of generating and integrating
messages. Since our approach is developed from the basic
framework of MADDPG, comparing with it is similar to an
ablation study of no communication.

Full Sharing: This model directly uses the full observations
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Our approach closes the gap between learning-based caching 
mechanism and learning-based multi-agent communication

‣ Outperforms other caching algorithms that are rule-based, 
MARL-based without communication, or MARL-based with 
full observations sharing

‣ Introduces limited communication overhead and delay 
considering bandwidth constraints
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