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Stealing Clight's dota
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Client ‘s 3radien‘ts are shared with the server.
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Client’s 3radients are Xhored with the server.
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There are mul‘tiple steps of More SOPhIS‘tIca‘ted
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# Epochs > 1 Learming rate scheduler
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To realize The same s,radien‘t de,sce,n‘t
process using the duw\my data instead,
the server requires a series of
prior knowle_clge_.

Geiping et al., "Inverting Gradients — How Easy Is It to Break Privacy in Federated Learning,” NeurlPS 2020.
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Ground truth explicit initialization

RS1 RS2 RS3

1

¥

e\

S |

Zhu et al., "Deep Leakage from Gradients,” NeurlPS 2019.
Geiping et al., "Inverting Gradients — How Easy Is It to Break Privacy in Federated Learning,” NeurlPS 2020.

Zhao et al., "IDLG: Improved Deep Leakage from Gradients,” arXiv 2020.
Jeon et al., "Gradient Inversion with Generative Image Prior,” NeurlPS 2021.



Untrained network with

Ground truth default PyTorch initialization
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Trained network pre-trained
with the same data

Ground truth
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and self-adaptive protection
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Sun et al., “Soteria: Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective,” CVPR 2021.

Wang et al., “Protect Privacy from Gradient Leakage Attack in Federated Learning,” INFOCOM 2022.



No defense GC DP Soteria GD OUTPOST
MSE 7 6.6e-3 13.96 113.63 95.19 32.57 77.05
- LPIPS 1 7.1e-2 0.55 0.60 0.63 0.64 0.58
TSSIM | 0.09 33c0

1.0e-2

0.13

1, ._.-_‘I_'

[Scenario 1] EMNIST: £ =1.n=1,B=1

No defense GC DP Soteria GD OUTPOST
-~ MSE T 2.6e-7 199.08 297.84 296.76 360.98 294.678
- LPIPS T 5.8e-7 0.60 0.66 0.63 0.64 0.68
“SSIM | T.00 032 | 65e2

4.1e-2

1.7e-2

1.6e-2




[Scenario 3] CIFAR-10: £ =1.n=1,B=1

. No defense GC DP Soteria GD OUTPOST
MSET | S5.1e2 | 783 | 3408 | 2501 | 11.46
LPIPS T | 053 077 | 077 | 076 | 0.4
l SSIM | 0.57 4.4e-2 3.6e-2 5.5e-2 2.2e-2
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. No defense GC DP Soteria GD OUTPOST
. MSE 7 5.9¢e-5 27.50 34.51 2591 56.66 35.24
LPIPS T | 1.8¢3 0.76 076 | 0.7 0.77
SSIM | 0.99 5.5e-2 1.7e-2 3.4e-2



Ploto: 4 New Froamework for
Scalable Federated Leo\mina Research

httes://qithub.com/TL-System/plato
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A ’thorough inVQS‘t?ao\‘t?on of
3r‘o\die,n‘t le_a\kaxge, atlacks n
prodluction Federated le_o\minﬁ

Significantly weakened!

Ou'tpos‘t: o defense mechanism
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SigniPicom‘tly we_a\ke_ne_d.’

Ou‘tpos‘t: o defense mechanism

Sufficient with minimal sacrfice!



