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TABLE I: Reconstructing a single image using the DLG attack, with different model initialization methods or training stages.

Ground truth Untrained network with
explicit initialization

Untrained network with
default PyTorch initialization

Trained network pre-trained
with the same data

RS1 RS2 RS3 RS1 RS2 RS3 RS1 RS2 RS3

TABLE II: Assumptions and settings: production FL vs. what was used in existing gradient leakage attacks.

Parameters/Settings What is practical in production FL Used in previous attacks

Network model state Model in an arbitrary communication
round Untrained model with explicit initialization

The number of epochs E, Multiple local steps with

E:stronger������! n:stronger�����! B:stronger������! Examples
1 � 1 1 � 1 = n  n
X X X DLG [1]
X X X iDLG [3]

the number of data samples n, E � 1, n � 1, B  n X X X csDLG [2]and batch size B X X X
X X X GradInversion [4]

Data heterogeneity non-i.i.d. distribution Not fully investigated

Gradient descent optimizer Incorporating learning rate, momentum,
weight decay, learning rate schedule Fixed learning rate only

Other prior knowledge Not accessible for the server Batch normalization statistics [2], [4], private labels [2], etc.

labels as a result of such a non-i.i.d. distribution. Under
these circumstances, the accuracy of label estimation may be
significantly affected.

B. More Sophisticated DLG Attacks

Approximating gradients from updates. As we have
argued, instead of gradients, model updates are transmitted
from clients to the server in production FL. When training
a neural network in federated learning, each client tries to
optimize the network parameters ✓ using a loss function L✓

on local training data. With a model Fwk
t

, the gradient rk
t

at a local training step can be evaluated by rL✓(Fwk
t
) and

the new model weights can be updated with a learning rate
⌘ as wk

t+1 = wk
t � ⌘rk

t . With ⌧k steps of local training
completed, the model weights at the end of this commu-
nication round can be expressed as wk(t + 1) : wk

t+⌧k .
After multiple local steps of training in a communication, the
server updates the global model by the local model updates
(delta) as w(t + 1) = w(t) +

P
k

nk

n �k(t, t + 1), where
�k(t, t+ 1) = wk(t+ 1)� wk(t).

Existing work in the literature [7], [12] considered gradients
and model updates as mathematically equivalent, and used
Eq. (2) to convert the delta �k(t, t + 1) to gradients before
performing gradient matching. Note that, for such an approxi-
mation to be accurate, the fixed learning rate used at the victim
client (or shared between all the clients) must be known by
the attacker.

rk(t, t+ 1) = ��k(t, t+ 1)

⌘
(2)

Even with a known learning rate, such an approximation
only works effectively in the simplest case where only the
learning rate is used in the local gradient descent steps. In
production FL, however, there are a number of other factors,
such as momentum, weight decay, and learning rate schedules,
that are used routinely as best practices when training neural
networks. Gradient approximation from model updates will
fail in these more realistic settings as the computation is not
fully reversible for the attacker [13].

Matching deltas from updates. As an alternative to ap-
proximating gradients from updates, Geiping et al. [2] di-
rectly conducted the matching process over model updates
(or updated weights), with a similar matching mechanism to
conventional gradient matching. The attacker directly matches
its dummy weights or weight delta with the absolute weights
or model updates.

For delta matching to be effective, the server requires a
series of prior knowledge to realize the same gradient descent
process using the dummy data instead, including the number
of images to be reconstructed n, the batch size B, the learning
rate ⌘, and other gradient descent factors such as weight
decay and momentum. What’s more, the effectiveness of the
delta matching process relies heavily on the assumption that
attackers know the data labels [2]. Without known labels as
prior, data reconstruction will become harder. But as we have
pointed out earlier in this section, label recovery often fails
in production FL, where client data distributions are usually
non-i.i.d.

Summary. Based on our analysis so far, the most feasible
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and GradDefense (GD) [6], along with two commonly used
defenses for general attacks in federated learning — gradient
compression (GC) [1], which prunes small values in gradi-
ents; and differential privacy (DP) [18], which adds noise
to gradients. We evaluate these defense mechanisms against
two gradient leakage attacks: DLG [1] and csDLG [2]. When
applying these attacks, we use the mechanism of matching
deltas from updates, which is the most practical choice in
production FL.

Datasets and models. We evaluate both gradient leakage
attacks and defenses in PLATO,2 an open-source research
framework for federated learning. We show data reconstruction
results over two image classification datasets: EMNIST and
CIFAR-10. We use the same LeNet model evaluated in [1], [2],
which consists of 4 convolutional layers and 1 fully-connected
layer.

Evaluation metrics. To evaluate the effectiveness of the
defense mechanisms, we use mean-square-error (MSE), struc-
tural similarity index measure (SSIM), and learned perceptual
image patch similarity (LPIPS) as our metrics to measure
the distance between the reconstructed image and raw image.
To evaluate the impact of the defenses on the convergence
performance of FL training, we show the accuracy of the
global model on the validation dataset over multiple commu-
nication rounds using the FedAvg algorithm. To evaluate the
computation overhead introduced by the defenses, we measure
the wall-clock time averaged across multiple communication
rounds.

Hyperparameter configurations. We evaluate OUTPOST
with respect to two aspects: (1) training performance, where
we examine how our defense affects the FL training time and
the validation accuracy of the converged model in production
FL settings; and (2) defense effectiveness, where we evaluate
how effective OUTPOST is under settings where the gradient
leakage attacks are as threatening as possible. For alternative
defense mechanisms, we have the following configurations.
For GC, we set the pruning rate of gradients to 80%; for DP,
we use Laplacian noise and set the noise variance to 0.1; for
Soteria, we set the pruning rate of the the fully connected
layer’s gradients to 50%; for GradDefense, we turn on the
local clipping operation and use the same settings in their
source code with 0.01 as the Gaussian noise variance; and
for OUTPOST, we set our hyperparameters as � = 0.8,' =
40,� = 0.1, ⇢ = 80.

A. Evaluating the Training Performance

With respect to the training performance, for both datasets,
data is non-i.i.d. distributed across 100 clients, each holding
1% of the total training samples (i.e., 1128 for EMNIST and
500 for CIFAR-10). Regarding the local epoch E and batch
size B, we set them as E = 5, B = 32 for both datasets.
We apply the SGD optimizer for local training and set the
learning rate ⌘ to 0.01. In each communication round, the
server randomly selects 10 clients out of 100 and aggregates

2Available online at https://github.com/TL-System/plato.
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Fig. 3: The impact of defenses on FL training.

their model updates. We terminate FedAvg training sessions
with various defenses when the number of communication
rounds reaches 100 on EMNIST and 150 CIFAR-10, where the
global models converge.

With respect to the validation accuracy of the converged
model and the elapsed wall-clock time, our results over EMNIST
and CIFAR-10 have been shown in Fig. 3. If we examine the
ultimate global model accuracy at the end of each training
session, it can be observed that all the defenses incurred
a certain amount of losses. DP affected the convergence
performance the most, and only reached 91.5% and 83.1% of
the validation accuracy without any defense, over EMNIST and
CIFAR-10 datasets, respectively. This observation is consistent
with our expectations based on these defense mechanisms.
GC and Soteria both prune gradients with small magnitudes
to zeros, which have insignificant effects on weights to be
updated. Though GradDefense and OUTPOST also add noise to
gradients, the level of noise is controlled with model sensitivity
and model status, respectively. Overall, OUTPOST induces
only 3.28% and 2.19% accuracy loss with 3.54% and 1.47%
delay, over EMNIST and CIFAR-10 datasets, respectively.

When we examine the wall-clock time elapsed in the same
number of communication rounds, it is apparent from Fig. 3
that GC, DP and OUTPOST as defenses did not introduce
any significant delays due to the computation overhead, while

Sun et al., “Soteria: Provable Defense against Privacy Leakage in Federated Learning from Representation Perspective,” CVPR 2021. 
Wang et al., “Protect Privacy from Gradient Leakage Attack in Federated Learning,” INFOCOM 2022.



TABLE III: The effectiveness of various defense mechanisms against different attack baselines, datasets, hyperparameter
configurations.

DLG csDLG

[Scenario 1] EMNIST: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 6.6e-3 13.96 113.63 95.19 32.57 77.05 2.6e-7 199.08 297.84 296.76 360.98 294.678

LPIPS " 7.1e-2 0.55 0.60 0.63 0.64 0.58 5.8e-7 0.60 0.66 0.63 0.64 0.68
SSIM # 0.99 0.30 0.19 3.3e-2 1.0e-2 0.13 1.00 0.32 6.5e-2 4.1e-2 1.7e-2 1.6e-2

[Scenario 2] EMNIST: E = 1, n = 2, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.8e-2 69.87 319.30 16.07 25.50 75.92 0.14 336.05 1231.82 782.93 668.79 277.73

LPIPS " 0.31 0.61 0.66 0.70 0.65 0.67 0.40 0.60 0.65 0.59 0.63 0.66
SSIM # 0.77 3.7e-2 2.4e-2 4.7e-2 2.7e-2 6.4e-2 0.70 3.3e-2 1.4e-2 1.6e-2 3.4e-2 3.8e-2

[Scenario 3] CIFAR-10: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.1e-2 7.83 34.08 25.91 11.46 13.10 5.9e-5 27.50 34.51 25.91 56.66 35.24

LPIPS " 0.53 0.77 0.77 0.76 0.74 0.77 1.8e-3 0.76 0.78 0.76 0.77 0.77
SSIM # 0.57 4.4e-2 3.6e-2 5.5e-2 2.2e-2 2.1e-2 0.99 2.6e-2 2.9e-2 5.5e-2 1.7e-2 3.4e-2

[Scenario 4] CIFAR-10: E = 1, n = 16, B = 16

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 1.37 4.82 19.92 2.85 4.04 15.85 6.2e-2 6.85 13.68 14.87 2.1e10 13.03

LPIPS " 0.67 0.69 0.71 0.70 0.69 0.70 0.51 0.69 0.71 0.69 0.71 0.70
SSIM # 2.9e-2 1.9e-2 1.5e-2 2.2e-2 2.2e-2 1.7e-2 0.30 4.5e-2 1.6e-2 2.7e-2 3.8e-2 3.1e-2

GradDefense and Soteria extended the training session an
order of magnitude longer than FedAvg without any de-
fenses. This is because Soteria has to learn the perturbed
data representation in each local SGD iteration based on data
representation in the FC layer of the model trained after
that iteration. Similarly, GradDefense needs to compute model
sensitivity in each iteration based on which it adds Gaussian
noise to selected slices of gradients. In contrast, OUTPOST is
an order of magnitude less time-consuming than these state-of-
the-art alternatives, thanks to its fast evaluation of the privacy
leakage risk based on model status and its perturbation with
iteration-based decay.

One may wonder why Soteria and GradDefense are not
applied to model updates at the end of each communication
round instead, since the notions of gradients and model
updates are not clearly differentiated in their papers. This is
due to the fact that, to compute the mask for pruning, Soteria

needs detailed information such as the gradient of the loss
with respect to the input batch data, which is only accessible
in each SGD iteration. The slicing and perturbation methods
in GradDefense are also gradient specific.

B. How Effective are the Defenses?

For our defense evaluation, we make the attack as strong as
possible by having only one client participate in the training,
with the attack performed in the first round of training. The
model is explicitly initialized with a wider distribution, and no
momentum, weight decay, or learning rate scheduler is applied
to the SGD optimizer. Although we’ve shown in Section III
that this setting is completely unrealistic, we only use it to
demonstrate the effectiveness of the defenses, and exaggerate
the difference between various defense mechanisms in this
extreme case. For both DLG and csDLG attacks, we applied
the L-BFGS optimizer with 3000 iterations of reconstruction to

TABLE III: The effectiveness of various defense mechanisms against different attack baselines, datasets, hyperparameter
configurations.

DLG csDLG

[Scenario 1] EMNIST: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 6.6e-3 13.96 113.63 95.19 32.57 77.05 2.6e-7 199.08 297.84 296.76 360.98 294.678

LPIPS " 7.1e-2 0.55 0.60 0.63 0.64 0.58 5.8e-7 0.60 0.66 0.63 0.64 0.68
SSIM # 0.99 0.30 0.19 3.3e-2 1.0e-2 0.13 1.00 0.32 6.5e-2 4.1e-2 1.7e-2 1.6e-2

[Scenario 2] EMNIST: E = 1, n = 2, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.8e-2 69.87 319.30 16.07 25.50 75.92 0.14 336.05 1231.82 782.93 668.79 277.73

LPIPS " 0.31 0.61 0.66 0.70 0.65 0.67 0.40 0.60 0.65 0.59 0.63 0.66
SSIM # 0.77 3.7e-2 2.4e-2 4.7e-2 2.7e-2 6.4e-2 0.70 3.3e-2 1.4e-2 1.6e-2 3.4e-2 3.8e-2

[Scenario 3] CIFAR-10: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.1e-2 7.83 34.08 25.91 11.46 13.10 5.9e-5 27.50 34.51 25.91 56.66 35.24

LPIPS " 0.53 0.77 0.77 0.76 0.74 0.77 1.8e-3 0.76 0.78 0.76 0.77 0.77
SSIM # 0.57 4.4e-2 3.6e-2 5.5e-2 2.2e-2 2.1e-2 0.99 2.6e-2 2.9e-2 5.5e-2 1.7e-2 3.4e-2

[Scenario 4] CIFAR-10: E = 1, n = 16, B = 16

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 1.37 4.82 19.92 2.85 4.04 15.85 6.2e-2 6.85 13.68 14.87 2.1e10 13.03

LPIPS " 0.67 0.69 0.71 0.70 0.69 0.70 0.51 0.69 0.71 0.69 0.71 0.70
SSIM # 2.9e-2 1.9e-2 1.5e-2 2.2e-2 2.2e-2 1.7e-2 0.30 4.5e-2 1.6e-2 2.7e-2 3.8e-2 3.1e-2

GradDefense and Soteria extended the training session an
order of magnitude longer than FedAvg without any de-
fenses. This is because Soteria has to learn the perturbed
data representation in each local SGD iteration based on data
representation in the FC layer of the model trained after
that iteration. Similarly, GradDefense needs to compute model
sensitivity in each iteration based on which it adds Gaussian
noise to selected slices of gradients. In contrast, OUTPOST is
an order of magnitude less time-consuming than these state-of-
the-art alternatives, thanks to its fast evaluation of the privacy
leakage risk based on model status and its perturbation with
iteration-based decay.

One may wonder why Soteria and GradDefense are not
applied to model updates at the end of each communication
round instead, since the notions of gradients and model
updates are not clearly differentiated in their papers. This is
due to the fact that, to compute the mask for pruning, Soteria

needs detailed information such as the gradient of the loss
with respect to the input batch data, which is only accessible
in each SGD iteration. The slicing and perturbation methods
in GradDefense are also gradient specific.

B. How Effective are the Defenses?

For our defense evaluation, we make the attack as strong as
possible by having only one client participate in the training,
with the attack performed in the first round of training. The
model is explicitly initialized with a wider distribution, and no
momentum, weight decay, or learning rate scheduler is applied
to the SGD optimizer. Although we’ve shown in Section III
that this setting is completely unrealistic, we only use it to
demonstrate the effectiveness of the defenses, and exaggerate
the difference between various defense mechanisms in this
extreme case. For both DLG and csDLG attacks, we applied
the L-BFGS optimizer with 3000 iterations of reconstruction to

TABLE III: The effectiveness of various defense mechanisms against different attack baselines, datasets, hyperparameter
configurations.

DLG csDLG

[Scenario 1] EMNIST: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 6.6e-3 13.96 113.63 95.19 32.57 77.05 2.6e-7 199.08 297.84 296.76 360.98 294.678

LPIPS " 7.1e-2 0.55 0.60 0.63 0.64 0.58 5.8e-7 0.60 0.66 0.63 0.64 0.68
SSIM # 0.99 0.30 0.19 3.3e-2 1.0e-2 0.13 1.00 0.32 6.5e-2 4.1e-2 1.7e-2 1.6e-2

[Scenario 2] EMNIST: E = 1, n = 2, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.8e-2 69.87 319.30 16.07 25.50 75.92 0.14 336.05 1231.82 782.93 668.79 277.73

LPIPS " 0.31 0.61 0.66 0.70 0.65 0.67 0.40 0.60 0.65 0.59 0.63 0.66
SSIM # 0.77 3.7e-2 2.4e-2 4.7e-2 2.7e-2 6.4e-2 0.70 3.3e-2 1.4e-2 1.6e-2 3.4e-2 3.8e-2

[Scenario 3] CIFAR-10: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.1e-2 7.83 34.08 25.91 11.46 13.10 5.9e-5 27.50 34.51 25.91 56.66 35.24

LPIPS " 0.53 0.77 0.77 0.76 0.74 0.77 1.8e-3 0.76 0.78 0.76 0.77 0.77
SSIM # 0.57 4.4e-2 3.6e-2 5.5e-2 2.2e-2 2.1e-2 0.99 2.6e-2 2.9e-2 5.5e-2 1.7e-2 3.4e-2

[Scenario 4] CIFAR-10: E = 1, n = 16, B = 16

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 1.37 4.82 19.92 2.85 4.04 15.85 6.2e-2 6.85 13.68 14.87 2.1e10 13.03

LPIPS " 0.67 0.69 0.71 0.70 0.69 0.70 0.51 0.69 0.71 0.69 0.71 0.70
SSIM # 2.9e-2 1.9e-2 1.5e-2 2.2e-2 2.2e-2 1.7e-2 0.30 4.5e-2 1.6e-2 2.7e-2 3.8e-2 3.1e-2

GradDefense and Soteria extended the training session an
order of magnitude longer than FedAvg without any de-
fenses. This is because Soteria has to learn the perturbed
data representation in each local SGD iteration based on data
representation in the FC layer of the model trained after
that iteration. Similarly, GradDefense needs to compute model
sensitivity in each iteration based on which it adds Gaussian
noise to selected slices of gradients. In contrast, OUTPOST is
an order of magnitude less time-consuming than these state-of-
the-art alternatives, thanks to its fast evaluation of the privacy
leakage risk based on model status and its perturbation with
iteration-based decay.

One may wonder why Soteria and GradDefense are not
applied to model updates at the end of each communication
round instead, since the notions of gradients and model
updates are not clearly differentiated in their papers. This is
due to the fact that, to compute the mask for pruning, Soteria

needs detailed information such as the gradient of the loss
with respect to the input batch data, which is only accessible
in each SGD iteration. The slicing and perturbation methods
in GradDefense are also gradient specific.

B. How Effective are the Defenses?

For our defense evaluation, we make the attack as strong as
possible by having only one client participate in the training,
with the attack performed in the first round of training. The
model is explicitly initialized with a wider distribution, and no
momentum, weight decay, or learning rate scheduler is applied
to the SGD optimizer. Although we’ve shown in Section III
that this setting is completely unrealistic, we only use it to
demonstrate the effectiveness of the defenses, and exaggerate
the difference between various defense mechanisms in this
extreme case. For both DLG and csDLG attacks, we applied
the L-BFGS optimizer with 3000 iterations of reconstruction to

TABLE III: The effectiveness of various defense mechanisms against different attack baselines, datasets, hyperparameter
configurations.

DLG csDLG

[Scenario 1] EMNIST: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 6.6e-3 13.96 113.63 95.19 32.57 77.05 2.6e-7 199.08 297.84 296.76 360.98 294.678

LPIPS " 7.1e-2 0.55 0.60 0.63 0.64 0.58 5.8e-7 0.60 0.66 0.63 0.64 0.68
SSIM # 0.99 0.30 0.19 3.3e-2 1.0e-2 0.13 1.00 0.32 6.5e-2 4.1e-2 1.7e-2 1.6e-2

[Scenario 2] EMNIST: E = 1, n = 2, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.8e-2 69.87 319.30 16.07 25.50 75.92 0.14 336.05 1231.82 782.93 668.79 277.73

LPIPS " 0.31 0.61 0.66 0.70 0.65 0.67 0.40 0.60 0.65 0.59 0.63 0.66
SSIM # 0.77 3.7e-2 2.4e-2 4.7e-2 2.7e-2 6.4e-2 0.70 3.3e-2 1.4e-2 1.6e-2 3.4e-2 3.8e-2

[Scenario 3] CIFAR-10: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.1e-2 7.83 34.08 25.91 11.46 13.10 5.9e-5 27.50 34.51 25.91 56.66 35.24

LPIPS " 0.53 0.77 0.77 0.76 0.74 0.77 1.8e-3 0.76 0.78 0.76 0.77 0.77
SSIM # 0.57 4.4e-2 3.6e-2 5.5e-2 2.2e-2 2.1e-2 0.99 2.6e-2 2.9e-2 5.5e-2 1.7e-2 3.4e-2

[Scenario 4] CIFAR-10: E = 1, n = 16, B = 16

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 1.37 4.82 19.92 2.85 4.04 15.85 6.2e-2 6.85 13.68 14.87 2.1e10 13.03

LPIPS " 0.67 0.69 0.71 0.70 0.69 0.70 0.51 0.69 0.71 0.69 0.71 0.70
SSIM # 2.9e-2 1.9e-2 1.5e-2 2.2e-2 2.2e-2 1.7e-2 0.30 4.5e-2 1.6e-2 2.7e-2 3.8e-2 3.1e-2

GradDefense and Soteria extended the training session an
order of magnitude longer than FedAvg without any de-
fenses. This is because Soteria has to learn the perturbed
data representation in each local SGD iteration based on data
representation in the FC layer of the model trained after
that iteration. Similarly, GradDefense needs to compute model
sensitivity in each iteration based on which it adds Gaussian
noise to selected slices of gradients. In contrast, OUTPOST is
an order of magnitude less time-consuming than these state-of-
the-art alternatives, thanks to its fast evaluation of the privacy
leakage risk based on model status and its perturbation with
iteration-based decay.

One may wonder why Soteria and GradDefense are not
applied to model updates at the end of each communication
round instead, since the notions of gradients and model
updates are not clearly differentiated in their papers. This is
due to the fact that, to compute the mask for pruning, Soteria

needs detailed information such as the gradient of the loss
with respect to the input batch data, which is only accessible
in each SGD iteration. The slicing and perturbation methods
in GradDefense are also gradient specific.

B. How Effective are the Defenses?

For our defense evaluation, we make the attack as strong as
possible by having only one client participate in the training,
with the attack performed in the first round of training. The
model is explicitly initialized with a wider distribution, and no
momentum, weight decay, or learning rate scheduler is applied
to the SGD optimizer. Although we’ve shown in Section III
that this setting is completely unrealistic, we only use it to
demonstrate the effectiveness of the defenses, and exaggerate
the difference between various defense mechanisms in this
extreme case. For both DLG and csDLG attacks, we applied
the L-BFGS optimizer with 3000 iterations of reconstruction to



TABLE III: The effectiveness of various defense mechanisms against different attack baselines, datasets, hyperparameter
configurations.

DLG csDLG

[Scenario 1] EMNIST: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 6.6e-3 13.96 113.63 95.19 32.57 77.05 2.6e-7 199.08 297.84 296.76 360.98 294.678

LPIPS " 7.1e-2 0.55 0.60 0.63 0.64 0.58 5.8e-7 0.60 0.66 0.63 0.64 0.68
SSIM # 0.99 0.30 0.19 3.3e-2 1.0e-2 0.13 1.00 0.32 6.5e-2 4.1e-2 1.7e-2 1.6e-2

[Scenario 2] EMNIST: E = 1, n = 2, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.8e-2 69.87 319.30 16.07 25.50 75.92 0.14 336.05 1231.82 782.93 668.79 277.73

LPIPS " 0.31 0.61 0.66 0.70 0.65 0.67 0.40 0.60 0.65 0.59 0.63 0.66
SSIM # 0.77 3.7e-2 2.4e-2 4.7e-2 2.7e-2 6.4e-2 0.70 3.3e-2 1.4e-2 1.6e-2 3.4e-2 3.8e-2

[Scenario 3] CIFAR-10: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.1e-2 7.83 34.08 25.91 11.46 13.10 5.9e-5 27.50 34.51 25.91 56.66 35.24

LPIPS " 0.53 0.77 0.77 0.76 0.74 0.77 1.8e-3 0.76 0.78 0.76 0.77 0.77
SSIM # 0.57 4.4e-2 3.6e-2 5.5e-2 2.2e-2 2.1e-2 0.99 2.6e-2 2.9e-2 5.5e-2 1.7e-2 3.4e-2

[Scenario 4] CIFAR-10: E = 1, n = 16, B = 16

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 1.37 4.82 19.92 2.85 4.04 15.85 6.2e-2 6.85 13.68 14.87 2.1e10 13.03

LPIPS " 0.67 0.69 0.71 0.70 0.69 0.70 0.51 0.69 0.71 0.69 0.71 0.70
SSIM # 2.9e-2 1.9e-2 1.5e-2 2.2e-2 2.2e-2 1.7e-2 0.30 4.5e-2 1.6e-2 2.7e-2 3.8e-2 3.1e-2

GradDefense and Soteria extended the training session an
order of magnitude longer than FedAvg without any de-
fenses. This is because Soteria has to learn the perturbed
data representation in each local SGD iteration based on data
representation in the FC layer of the model trained after
that iteration. Similarly, GradDefense needs to compute model
sensitivity in each iteration based on which it adds Gaussian
noise to selected slices of gradients. In contrast, OUTPOST is
an order of magnitude less time-consuming than these state-of-
the-art alternatives, thanks to its fast evaluation of the privacy
leakage risk based on model status and its perturbation with
iteration-based decay.

One may wonder why Soteria and GradDefense are not
applied to model updates at the end of each communication
round instead, since the notions of gradients and model
updates are not clearly differentiated in their papers. This is
due to the fact that, to compute the mask for pruning, Soteria

needs detailed information such as the gradient of the loss
with respect to the input batch data, which is only accessible
in each SGD iteration. The slicing and perturbation methods
in GradDefense are also gradient specific.

B. How Effective are the Defenses?

For our defense evaluation, we make the attack as strong as
possible by having only one client participate in the training,
with the attack performed in the first round of training. The
model is explicitly initialized with a wider distribution, and no
momentum, weight decay, or learning rate scheduler is applied
to the SGD optimizer. Although we’ve shown in Section III
that this setting is completely unrealistic, we only use it to
demonstrate the effectiveness of the defenses, and exaggerate
the difference between various defense mechanisms in this
extreme case. For both DLG and csDLG attacks, we applied
the L-BFGS optimizer with 3000 iterations of reconstruction to

TABLE III: The effectiveness of various defense mechanisms against different attack baselines, datasets, hyperparameter
configurations.

DLG csDLG

[Scenario 1] EMNIST: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 6.6e-3 13.96 113.63 95.19 32.57 77.05 2.6e-7 199.08 297.84 296.76 360.98 294.678

LPIPS " 7.1e-2 0.55 0.60 0.63 0.64 0.58 5.8e-7 0.60 0.66 0.63 0.64 0.68
SSIM # 0.99 0.30 0.19 3.3e-2 1.0e-2 0.13 1.00 0.32 6.5e-2 4.1e-2 1.7e-2 1.6e-2

[Scenario 2] EMNIST: E = 1, n = 2, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.8e-2 69.87 319.30 16.07 25.50 75.92 0.14 336.05 1231.82 782.93 668.79 277.73

LPIPS " 0.31 0.61 0.66 0.70 0.65 0.67 0.40 0.60 0.65 0.59 0.63 0.66
SSIM # 0.77 3.7e-2 2.4e-2 4.7e-2 2.7e-2 6.4e-2 0.70 3.3e-2 1.4e-2 1.6e-2 3.4e-2 3.8e-2

[Scenario 3] CIFAR-10: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.1e-2 7.83 34.08 25.91 11.46 13.10 5.9e-5 27.50 34.51 25.91 56.66 35.24

LPIPS " 0.53 0.77 0.77 0.76 0.74 0.77 1.8e-3 0.76 0.78 0.76 0.77 0.77
SSIM # 0.57 4.4e-2 3.6e-2 5.5e-2 2.2e-2 2.1e-2 0.99 2.6e-2 2.9e-2 5.5e-2 1.7e-2 3.4e-2

[Scenario 4] CIFAR-10: E = 1, n = 16, B = 16

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 1.37 4.82 19.92 2.85 4.04 15.85 6.2e-2 6.85 13.68 14.87 2.1e10 13.03

LPIPS " 0.67 0.69 0.71 0.70 0.69 0.70 0.51 0.69 0.71 0.69 0.71 0.70
SSIM # 2.9e-2 1.9e-2 1.5e-2 2.2e-2 2.2e-2 1.7e-2 0.30 4.5e-2 1.6e-2 2.7e-2 3.8e-2 3.1e-2

GradDefense and Soteria extended the training session an
order of magnitude longer than FedAvg without any de-
fenses. This is because Soteria has to learn the perturbed
data representation in each local SGD iteration based on data
representation in the FC layer of the model trained after
that iteration. Similarly, GradDefense needs to compute model
sensitivity in each iteration based on which it adds Gaussian
noise to selected slices of gradients. In contrast, OUTPOST is
an order of magnitude less time-consuming than these state-of-
the-art alternatives, thanks to its fast evaluation of the privacy
leakage risk based on model status and its perturbation with
iteration-based decay.

One may wonder why Soteria and GradDefense are not
applied to model updates at the end of each communication
round instead, since the notions of gradients and model
updates are not clearly differentiated in their papers. This is
due to the fact that, to compute the mask for pruning, Soteria

needs detailed information such as the gradient of the loss
with respect to the input batch data, which is only accessible
in each SGD iteration. The slicing and perturbation methods
in GradDefense are also gradient specific.

B. How Effective are the Defenses?

For our defense evaluation, we make the attack as strong as
possible by having only one client participate in the training,
with the attack performed in the first round of training. The
model is explicitly initialized with a wider distribution, and no
momentum, weight decay, or learning rate scheduler is applied
to the SGD optimizer. Although we’ve shown in Section III
that this setting is completely unrealistic, we only use it to
demonstrate the effectiveness of the defenses, and exaggerate
the difference between various defense mechanisms in this
extreme case. For both DLG and csDLG attacks, we applied
the L-BFGS optimizer with 3000 iterations of reconstruction to

TABLE III: The effectiveness of various defense mechanisms against different attack baselines, datasets, hyperparameter
configurations.

DLG csDLG

[Scenario 1] EMNIST: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 6.6e-3 13.96 113.63 95.19 32.57 77.05 2.6e-7 199.08 297.84 296.76 360.98 294.678

LPIPS " 7.1e-2 0.55 0.60 0.63 0.64 0.58 5.8e-7 0.60 0.66 0.63 0.64 0.68
SSIM # 0.99 0.30 0.19 3.3e-2 1.0e-2 0.13 1.00 0.32 6.5e-2 4.1e-2 1.7e-2 1.6e-2

[Scenario 2] EMNIST: E = 1, n = 2, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.8e-2 69.87 319.30 16.07 25.50 75.92 0.14 336.05 1231.82 782.93 668.79 277.73

LPIPS " 0.31 0.61 0.66 0.70 0.65 0.67 0.40 0.60 0.65 0.59 0.63 0.66
SSIM # 0.77 3.7e-2 2.4e-2 4.7e-2 2.7e-2 6.4e-2 0.70 3.3e-2 1.4e-2 1.6e-2 3.4e-2 3.8e-2

[Scenario 3] CIFAR-10: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.1e-2 7.83 34.08 25.91 11.46 13.10 5.9e-5 27.50 34.51 25.91 56.66 35.24

LPIPS " 0.53 0.77 0.77 0.76 0.74 0.77 1.8e-3 0.76 0.78 0.76 0.77 0.77
SSIM # 0.57 4.4e-2 3.6e-2 5.5e-2 2.2e-2 2.1e-2 0.99 2.6e-2 2.9e-2 5.5e-2 1.7e-2 3.4e-2

[Scenario 4] CIFAR-10: E = 1, n = 16, B = 16

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 1.37 4.82 19.92 2.85 4.04 15.85 6.2e-2 6.85 13.68 14.87 2.1e10 13.03

LPIPS " 0.67 0.69 0.71 0.70 0.69 0.70 0.51 0.69 0.71 0.69 0.71 0.70
SSIM # 2.9e-2 1.9e-2 1.5e-2 2.2e-2 2.2e-2 1.7e-2 0.30 4.5e-2 1.6e-2 2.7e-2 3.8e-2 3.1e-2

GradDefense and Soteria extended the training session an
order of magnitude longer than FedAvg without any de-
fenses. This is because Soteria has to learn the perturbed
data representation in each local SGD iteration based on data
representation in the FC layer of the model trained after
that iteration. Similarly, GradDefense needs to compute model
sensitivity in each iteration based on which it adds Gaussian
noise to selected slices of gradients. In contrast, OUTPOST is
an order of magnitude less time-consuming than these state-of-
the-art alternatives, thanks to its fast evaluation of the privacy
leakage risk based on model status and its perturbation with
iteration-based decay.

One may wonder why Soteria and GradDefense are not
applied to model updates at the end of each communication
round instead, since the notions of gradients and model
updates are not clearly differentiated in their papers. This is
due to the fact that, to compute the mask for pruning, Soteria

needs detailed information such as the gradient of the loss
with respect to the input batch data, which is only accessible
in each SGD iteration. The slicing and perturbation methods
in GradDefense are also gradient specific.

B. How Effective are the Defenses?

For our defense evaluation, we make the attack as strong as
possible by having only one client participate in the training,
with the attack performed in the first round of training. The
model is explicitly initialized with a wider distribution, and no
momentum, weight decay, or learning rate scheduler is applied
to the SGD optimizer. Although we’ve shown in Section III
that this setting is completely unrealistic, we only use it to
demonstrate the effectiveness of the defenses, and exaggerate
the difference between various defense mechanisms in this
extreme case. For both DLG and csDLG attacks, we applied
the L-BFGS optimizer with 3000 iterations of reconstruction to

TABLE III: The effectiveness of various defense mechanisms against different attack baselines, datasets, hyperparameter
configurations.

DLG csDLG

[Scenario 1] EMNIST: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 6.6e-3 13.96 113.63 95.19 32.57 77.05 2.6e-7 199.08 297.84 296.76 360.98 294.678

LPIPS " 7.1e-2 0.55 0.60 0.63 0.64 0.58 5.8e-7 0.60 0.66 0.63 0.64 0.68
SSIM # 0.99 0.30 0.19 3.3e-2 1.0e-2 0.13 1.00 0.32 6.5e-2 4.1e-2 1.7e-2 1.6e-2
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No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.8e-2 69.87 319.30 16.07 25.50 75.92 0.14 336.05 1231.82 782.93 668.79 277.73

LPIPS " 0.31 0.61 0.66 0.70 0.65 0.67 0.40 0.60 0.65 0.59 0.63 0.66
SSIM # 0.77 3.7e-2 2.4e-2 4.7e-2 2.7e-2 6.4e-2 0.70 3.3e-2 1.4e-2 1.6e-2 3.4e-2 3.8e-2

[Scenario 3] CIFAR-10: E = 1, n = 1, B = 1

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 5.1e-2 7.83 34.08 25.91 11.46 13.10 5.9e-5 27.50 34.51 25.91 56.66 35.24

LPIPS " 0.53 0.77 0.77 0.76 0.74 0.77 1.8e-3 0.76 0.78 0.76 0.77 0.77
SSIM # 0.57 4.4e-2 3.6e-2 5.5e-2 2.2e-2 2.1e-2 0.99 2.6e-2 2.9e-2 5.5e-2 1.7e-2 3.4e-2

[Scenario 4] CIFAR-10: E = 1, n = 16, B = 16

No defense GC DP Soteria GD OUTPOST No defense GC DP Soteria GD OUTPOST
MSE " 1.37 4.82 19.92 2.85 4.04 15.85 6.2e-2 6.85 13.68 14.87 2.1e10 13.03

LPIPS " 0.67 0.69 0.71 0.70 0.69 0.70 0.51 0.69 0.71 0.69 0.71 0.70
SSIM # 2.9e-2 1.9e-2 1.5e-2 2.2e-2 2.2e-2 1.7e-2 0.30 4.5e-2 1.6e-2 2.7e-2 3.8e-2 3.1e-2

GradDefense and Soteria extended the training session an
order of magnitude longer than FedAvg without any de-
fenses. This is because Soteria has to learn the perturbed
data representation in each local SGD iteration based on data
representation in the FC layer of the model trained after
that iteration. Similarly, GradDefense needs to compute model
sensitivity in each iteration based on which it adds Gaussian
noise to selected slices of gradients. In contrast, OUTPOST is
an order of magnitude less time-consuming than these state-of-
the-art alternatives, thanks to its fast evaluation of the privacy
leakage risk based on model status and its perturbation with
iteration-based decay.

One may wonder why Soteria and GradDefense are not
applied to model updates at the end of each communication
round instead, since the notions of gradients and model
updates are not clearly differentiated in their papers. This is
due to the fact that, to compute the mask for pruning, Soteria

needs detailed information such as the gradient of the loss
with respect to the input batch data, which is only accessible
in each SGD iteration. The slicing and perturbation methods
in GradDefense are also gradient specific.

B. How Effective are the Defenses?

For our defense evaluation, we make the attack as strong as
possible by having only one client participate in the training,
with the attack performed in the first round of training. The
model is explicitly initialized with a wider distribution, and no
momentum, weight decay, or learning rate scheduler is applied
to the SGD optimizer. Although we’ve shown in Section III
that this setting is completely unrealistic, we only use it to
demonstrate the effectiveness of the defenses, and exaggerate
the difference between various defense mechanisms in this
extreme case. For both DLG and csDLG attacks, we applied
the L-BFGS optimizer with 3000 iterations of reconstruction to












