
Unraveling Elevated Data Leakage in Split Learning for
Fine-Tuning Stable Diffusion Models

Anonymous Author(s)

ABSTRACT
Fine-tuning large models can be computationally expensive, posing
a challenge for individual users, especially those lacking expertise
and computational resources, to create customized models. While
many remote servers are available for large-scale training, directly
sending raw data to servers may lead to significant security con-
cerns. To improve data privacy, one can divide the model into a
small local module and a large remote module, train the local mod-
ule with their data and send only intermediate output to a remote
server for further training. This approach is called split learning.
However, recent studies have shown that split learning, even with-
out raw data sharing, is still not immune to data reconstruction
attacks as the intermediate output carries information about the
input data. In this paper, we focus on uncovering the elevated data
leakage vulnerabilities in large generative AI models like Stable
Diffusion, in the context of split fine-tuning. We show that the
adversary has more advanced knowledge about the client than
usual, as demonstrated through our devised data reconstruction
attacks. To enhance the security of split fine-tuning when faced
with data reconstruction attacks, we design a novel defense based
on self-attacking and dropout technique for accommodating vary-
ing privacy leakage risks from different cut layers, which protects
the intermediate output while having the least impact on model
utility and training efficiency compared with the state-of-the-art
split learning defenses.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Security
and privacy;

KEYWORDS
Model Inversion Attacks, Split Learning, Fine-Tuning, Stable Diffu-
sion

1 INTRODUCTION
With the swift progress of generative artificial intelligence, large
text-to-image diffusion models, most notably Stable Diffusion [27]
models, have attracted an astonishing level of interest over the
past two years, due to their exceptional ability to generate high-
quality images simply from a text prompt. Individuals now have
numerous access to user-friendly online interfaces that allow them

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

to use pre-trained diffusionmodels for artistic purposes and creative
production with ease, without the need for extensive technical
knowledge or expertise. They can further personalize the generated
outputs for a specific subject, such as themselves or their pets,
by using techniques like DreamBooth [29], which allows large
diffusion models to be fine-tuned using just a few (e.g., 3-5) images
of that subject.

However, the inherent risk of violating data privacy is a major
concernwhen it comes to uploading personal images to public cloud
platforms for remote fine-tuning, as sensitive data can be potentially
exposed to unauthorized access or misuse. On the other hand, al-
though locally fine-tuning large Stable Diffusion models guarantees
data security, it may require a considerable amount of computa-
tional resources and technical expertise. Moreover, many models
(such as proprietary models from MidJourney) are not openly avail-
able or free for personal use. These factors collectively motivate the
deployment of split learning [34], which allows users to fine-tune
pre-trained Stable Diffusion models more safely.

Split learning makes clients fine-tune models in a decentralized
fashion without sending private data to the server. Instead, each
client first sends its data through the first several layers of themodel,
which are held locally, and then sends the intermediate output of the
first several layers to the server, which is responsible for training
the remaining portion of the model. Since the client only has access
to the first several layers, split learning does not require the entire
model to be shared with clients, alleviating potential concerns from
themodel providers. In addition, split learning is sufficiently general
and can be readily applied to any neural network architecture [34],
making it feasible for multiple users to collaboratively train or
fine-tune any model while preserving data privacy.

However, recent studies have found that, even though only in-
termediate output is transmitted from client to server with split
learning, it is still vulnerable to private data leakage. At first glance,
split learning should be privacy-preserving: the server does not
have any knowledge of the parameters and structure of the client-
side model, or the freedom to query the client. This is contrary
to the assumptions commonly made in model inversion attacks,
which aim to reconstruct inputs given the outputs of the target
model [7, 9, 22, 40, 43]. Whether model inversion attacks are effec-
tive in the context of split fine-tuning remains an open question.

In the recent literature, new data reconstruction attacks that
were specifically tailored for collaborative inference [13] and split
learning [8, 11] were proposed. These attacks allowed an honest-
but-curious adversarial server to first reconstruct a functionally
similar model to the client model, and then use it to recover the
raw data input from the intermediate output received from the
client. However, these attacks primarily focused on conventional
deep neural networks, such as LeNet-5 [20], ResNet-18 [12], and
VGG-16 [30] for image classification tasks. It remains largely un-
explored how private data may be effectively reconstructed from

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam Anon.

intermediate output when large and complex models, such as Stable
Diffusion, are used in split learning.

When fine-tuning Stable Diffusion models, a user has the ability
to use any set of private images, which makes it almost impossible
for an adversarial server to predict or be aware of the specific dataset
used. As a result, the effectiveness of attacks that rely on training a
shadow client model [11, 13, 26] may be greatly diminished, as they
rely on the availability of public datasets with similar distributions
to the target ones. In addition, fine-tuning typically requires fewer
training steps compared to training a model from scratch. This may
render attacks such as FSHA [26] and PCAT [11] ineffective, as they
relied on the ability to train auxiliary models for data reconstruction
on the server along with the long-term training process of the
primary models. These observations put the adversarial server at a
disadvantage, as it may not have the same level of capabilities and
knowledge during fine-tuning compared to the process of training
a model from scratch.

On the flip side, while split fine-tuning imposes restrictions on
the server’s ability to launch attacks compared to split learning, it
grants the server additional knowledge. Despite the lack of white-
box or blackbox access to the client model during fine-tuning, the
adversarial server most certainly has the knowledge of the complete
pre-trained model before fine-tuning starts. This gives the server
a significant advantage, as the network structure is transparent,
and the pre-trained client model can be directly used as a func-
tionally similar model, eliminating the need of reconstructing the
client model from scratch as in the UnSplit attack [8]. Furthermore,
compared to other networks, the unique structure and forwarding
path of the U-Net [28] in the Stable Diffusion model pose a greater
challenge to preserving data privacy. Previous research [11, 13],
which suggested that splitting the neural network at a later layer
could reduce the private information in intermediate output, is no
longer applicable in this scenario, because the client is required to
transmit not only the intermediate output of the cut layer but also
the intermediate outputs of previous network blocks to the server.

In this paper, we carry out an in-depth evaluation and analysis of
the security of split learning, with a particular focus on preserving
data privacy when fine-tuning large generative AI models like Sta-
ble Diffusion. We revisit existing threads of model inversion attacks
and make adjustments to accommodate the threat models within
the context of split fine-tuning, fully considering the advantages
and disadvantages of the adversary’s knowledge and capabilities.
Building upon the refined threat models, we devise model inver-
sion attacks that are specifically tailored for split fine-tuning of the
Stable Diffusion model, taking into account the intricate network
structure and the model’s input, including both image and text
prompt. Through this process, we uncover potential vulnerabilities
involved in the split fine-tuning process. Our observations have
revealed that the risk of data leakage is significantly higher with
Stable Diffusion, compared with conventional models.

Drawing from these observations and insights regarding privacy-
preserving split learning, there is an urgent need to develop a
defense mechanism. In this paper, we propose a new defense mech-
anism specifically designed to protect the split fine-tuning process
over Stable Diffusion models. In particular, we employ the idea of
self-attacking, wherein an auxiliary neural network is trained on
the client side in advance to reconstruct its own data, as a means to

quantify the information leakage within the intermediate output of
the cut layer as compared to the input data. On top of it, we apply
a dropout layer to the image latents, with an adaptive dropout rate
determined by the quantified information leakage. We evaluate
the effectiveness of our proposed defense and state-of-the-art de-
fenses especially designed for split learning, including NoPeek [35]
and NoiseDefense [32]. Our results demonstrate that our defense
mechanism can effectively mitigate privacy risks while achieving
fine-tuning performance comparable to that of the model without
defense. Our defense exhibits the smallest drop in CLIP score [14]
and CLIP directional similarity [10] compared to other defenses,
indicating minimal impact on the fine-tuned model’s utility, while
increasing training time by only 1.8% ∼ 4%.

2 PRELIMINARIES AND RELATEDWORK
2.1 Split Learning
As an alternative to conventional federated learning, split learn-
ing [34] advocates that machine learning models should be split
between the client and its server, and then trained in a distributed
manner. Intuitively, split learning addresses the need of fine-tuning
large foundation models (such as Stable Diffusion) well, as these
large models may not be trained entirely on the client device. In-
stead, the client trains a deep neural network up to the cut layer
and sends the intermediate output at the cut layer to the server,
where forward propagation continues on the remaining portion of
the model after the cut layer. The server then calculates the loss for
backpropagation and sends the gradient down to the cut layer back
to the client to complete the backward pass.

Computing loss on the server side requires the client to share
corresponding labels along with the intermediate output. However,
this approach may not be secure if the labels contain sensitive
information. To eliminate this concern, split learning also allows a
U-shaped configuration that ideally protects the labels and the raw
data. In this configuration, the server only maintains the middle
layers of the model and leaves the end layers to the client. The
client is responsible for generating the loss locally and initiating
the backpropagation. The client then sends the gradients from the
end layers to the server to continue the backward pass through
the middle layers. Fig. 1 shows the difference between vanilla and
U-shaped split learning configurations. We only consider the U-
shaped split learning in this work, as it provides great protection
to clients’ private labels.

Split learning is a powerful tool for privacy-preserving distributed
machine learning that safeguards not only raw data but also model
architectures and parameters. Nevertheless, recent work has shown
that the intermediate outputs sent from clients to servers can still
reveal information about the corresponding training data and can
be exploited to reconstruct the raw data samples.

2.2 Data Reconstruction in Split Learning
Model inversion attacks have become a well-established technique
for reconstructing data samples using feature representation output
from the machine learning model. In the literature, two lines of
approaches have been proposed: optimization-based attacks that use
gradient descent to exploit the target model [9, 22], and training-
based attacks that involve training a separate attackmodel [7, 40, 43].

2

Unraveling Elevated Data Leakage in Split Learning for Fine-Tuning Stable Diffusion Models Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam

Intermediate
output

Client Server

Gradients

Loss

Private
data Label

(a) Vanilla split learning with label sharing

Intermediate
output

Loss

Client Server

Gradients
Private
data

Label

(b) U-shaped split learning without label sharing

Figure 1: Split learning with or without label sharing.

However, these standard model inversion attacks are not directly
applicable to split learning, primarily because the learning model
is divided across multiple devices where the server lacks access
to the client model’s network structure or parameters, and the
ability to query clients with specific data. As a response to this
challenge, several model inversion attacks specifically tailored for
split learning have been proposed.

In optimization-based attacks, the adversary requires whitebox ac-
cess to the target model — that is, knowledge of its parameters — to
perform backpropagation for optimization, but the server involved
in split learning has no information about the parameters of the
client model during training. To address this limitation, UnSplit [8]
incorporates model stealing [25, 33] to allow an honest-but-curious
server to construct a functionally similar model to the client model
and recover target input samples, with only the knowledge of the
client model’s network structure.

In training-based attacks, the adversary trains a model that learns
the mapping from the intermediate output to the input data. The
feature-space hijacking attack (FSHA) [26] involves a malicious
server completely disregarding primary training tasks and actively
hijacking the learning process of the distributed model with the
objective of training three additional attack models for reconstruct-
ing clients’ private data. PCAT [11] trains a pseudo-client model to
mimic the functionality of the client model, even in the absence of
knowledge about the client model’s network structure. This pseudo-
client model is then used to build a reverse mapping that enables
private data reconstruction. To train those auxiliary attack models,
public datasets that are relevant to the same learning task or have a
similar distribution to the target dataset are necessary. GLASS [21]
utilizes advanced StyleGAN models [18] that are pre-trained on
diverse data distributions. This strategy allows GLASS to harness
the abundant prior knowledge available in public data, thereby
enhancing data reconstruction capabilities for split learning.

DownBlock 2

DownBlock 1

DownBlock 3

DownBlock 4 UpBlock 4

UpBlock 3

UpBlock 2

UpBlock 1

MidBlock

Noisy
latents

Token
embeddings

Text
EncoderPrompt

Pixel
values

Variational
Autoencoder

Latents

Noise
Scheduler

Timestep
embeddings

Predicted
noise

Actual
noise

Loss
U-Net

Figure 2: The major components of Stable Diffusion and the
forwarding process through DreamBooth fine-tuning.

Optimization-based attacks are advantageous when no auxiliary
data is available, as they directly optimize a dummy input without
the need for external datasets. However, their reliance on iterative
gradient descent makes them slower and more computationally
expensive, especially for high-resolution images or large models,
since multiple iterations are required to optimize the dummy data
effectively. In contrast, training-based attacks allow the decoder to
infer input data from intermediate outputs in real time, eliminating
the need for repeated optimization as seen in optimization-based
attacks. However, the success of this approach largely depends on
the quality and relevance of the auxiliary dataset. The server must
also have substantial knowledge of the client’s data distribution,
which may not always be feasible in real-world scenarios. If the
auxiliary data poorly reflects the client’s data, the decoder may fail
to generalize, resulting in inaccurate reconstructions. Moreover,
the setup for training-based attacks is more complex, requiring
considerable time and computational resources to design and train
a model that closely mirrors the client’s model.

To mitigate privacy leakage from intermediate outputs in split
learning, several research efforts have been proposed. NoPeek [35],
which introduces a novel loss function, aims to prevent informa-
tion leakage by incorporating distance correlation between the raw
data and the intermediate output at the cut layer, alongside the
conventional classification loss during model training. NoiseDe-
fense [32], which can be regarded as a local differential privacy
mechanism [3], applies Laplacian noise to the intermediate output
before transmission from clients, preventing data reconstruction
by the server.

2.3 Fine-Tuning Stable Diffusion
Stable Diffusion (SD) is an advanced latent diffusion model that
excels at generating high-resolution images from text [27]. Un-
like operating directly in the high-dimensional image space (with
dimensions of 512 × 512), SD operates in a representative and low-
dimensional latent space (with dimensions of 4 × 64 × 64). During
the text-to-image generation process, SD begins by generating a
random tensor in the latent space, which serves as the initial im-
age. The text prompt is then processed by a text encoder, which
converts it into 77 token embedding vectors, each consisting of 768

3

Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam Anon.

dimensions. The U-Net model functioning as a noise predictor takes
the noisy latent and token embeddings as inputs and iteratively
estimates the noise within the latent space and subtracts this esti-
mated noise from the latent. Finally, the decoder of the Variational
Autoencoder converts the denoised latent into the final image in
pixel space. Additionally, SD is capable of transforming one image
into another based on a given text prompt. In this scenario, SD first
compresses the input image into the latent space using the encoder
of the Variational Autoencoder, without losing any information. It
then introduces noise to the latent representation before feeding it
into the U-Net for further processing and generation.

DreamBooth is an advanced technique used for fine-tuning a
pre-trained Stable Diffusion model, which can implant a subject
into the output domain of the model using only 3 to 5 input images
of the subject. These images are accompanied by a text prompt
containing a unique identifier followed by the class name of the
subject [29]. One of the most significant advantages of DreamBooth
is its ability to achieve impressive fine-tuning results using such
a small dataset, making it ideal for personalized image generation
tasks where collecting large amounts of data may be impractical
or unnecessary for the user. For example, a user can simply take a
few selfies from different angles to fine-tune the Stable Diffusion
model for generating an anime version of themselves.

Low-Rank Adaptation (LoRA) is an adapter-based technique
commonly used to improve the efficiency of fine-tuning, especially
for large models with a vast number of parameters [16]. Rather
than interfering with the original model, this method adds small
task-specific adapters to the pre-trained model, which can preserve
the pre-trained model’s general functionality while only adapting
to the target task. By leveraging LoRA, we can achieve an additional
reduction in training parameters and time for Stable Diffusion on
the client side when combined with split learning.

2.4 Splitting The U-Net
The key components of the Stable Diffusion v1.4 model and the
forwarding process involved in fine-tuning with DreamBooth are
illustrated in Fig. 2. The resulting loss obtained in each training iter-
ation will be used to update the parameters of the U-Net. The solid
black arrows in the U-Net’s data forwarding flow represent the in-
termediate outputs that are propagated from one DownBlock to the
next through max-pooling. Meanwhile, the dashed arrows between
each DownBlock and its corresponding UpBlock indicate that the
output from the DownBlock is also forwarded to its symmetric
UpBlock.

When applying split learning to Stable Diffusion, it is crucial
to recognize the symmetric structure and forwarding path of the
U-Net. The choice of where to split the network has a direct impact
on three key factors: the computational burden on the client, the
communication cost required to transmit intermediate outputs be-
tween the client and server, and the potential for data leakage from
the transmitted outputs.

If the network is split after any DownBlock, the intermediate
data sent from the client to the server includes the outputs of both
the current DownBlock and all preceding ones. Splitting at a later
DownBlock results in more intermediate data being transmitted,
which increases communication costs and heightens the risk of

data leakage. For example, as illustrated in Fig. 3a, when the client
handles the prior components along with DownBlocks 1 and 2,
while the server handles the remaining network, the client sends
the outputs of both DownBlock 1 and DownBlock 2 to the server.

On the other hand, if the network is split after any UpBlock, the
intermediate data transmitted includes the output of the current
UpBlock and the outputs of the DownBlocks that correspond to the
remaining UpBlocks. In Fig. 3b, for instance, when the network is
split after UpBlock 3, the client sends the outputs of DownBlocks
1 and 2, along with the output of UpBlock 3, to the server. Unlike
splitting at a DownBlock, splitting at a later UpBlock reduces the
amount of intermediate data transmitted but places a heavier com-
putational burden on the client, as fewer operations are offloaded
to the server. This compromises one of the key advantages of split
learning — transferring a significant portion of the computational
workload to the server to ease the client’s load.

DownBlock 2

DownBlock 1

DownBlock 3

DownBlock 4 UpBlock 4

UpBlock 3

UpBlock 2

UpBlock 1

MidBlock

①

②

②

(a) Splitting the U-Net after DownBlock 2

DownBlock 2

DownBlock 1

DownBlock 3

DownBlock 4 UpBlock 4

UpBlock 3

UpBlock 2

UpBlock 1

MidBlock

③

①

②

(b) Splitting the U-Net after UpBlock 3

Figure 3: Examples of splitting the U-Net in Stable Diffusion.
Components highlighted in red are maintained by the split
learning client, while components highlighted in green are
maintained by the server.

Therefore, splitting the network after an early DownBlock is
more practical and beneficial for the client, considering both its
limited computational resources and the need for privacy preserva-
tion, as it significantly reduces the local computational burden and
requires the transmission of only a minimal amount of intermediate
results. It becomes particularly interesting to investigate whether
the output of DownBlock 1 reveals any information about the input
data, as this output must be sent to the server regardless of the
chosen splitting strategy.

Given these considerations, our study focuses on splitting the
model at DownBlock 1 and examining potential data leakage from
its intermediate output. Additionally, we explore the data leakage

4

Unraveling Elevated Data Leakage in Split Learning for Fine-Tuning Stable Diffusion Models Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam

from subsequent DownBlocks to assess the relationship between
network depth and the informativeness of the outputs.

3 DATA RECONSTRUCTION ATTACKS ON
SPLIT FINE-TUNING STABLE DIFFUSION

3.1 Threat Model
The adversary can be any participant in the collaborative learning
that has access to the corresponding intermediate output. In our
evaluation, we focus on the split learning server as the potential
adversary who directly receives the intermediate outputs from the
split learning client. The goal of the adversary is to reconstruct the
client’s private data for fine-tuning from the received intermediate
output during the fine-tuning process. Specifically for Stable Diffu-
sion, our focus is on reconstructing the subject-oriented image data
rather than the associated text prompts. During the fine-tuning pro-
cess, we assume that the server is honest-but-curious, who adheres
to the split learning protocol and does not disrupt the collaborative
training for the sake of realizing the data reconstruction. We do
not consider a malicious server, as in FSHA [26], to be an adversary
since the client can easily detect and identify such behavior.

Split fine-tuning provides “pseudo-whitebox” access to the
client model.While split learning effectively hides the model ar-
chitectures and parameters between the client and server, as men-
tioned in Section 2, this feature diminishes during split fine-tuning.
Before the initiation of split fine-tuning, the layers on both the
client and server belong to the same pre-trained model. The server
may possess knowledge of the network structure and the model
parameters of the pre-trained model. This is particularly relevant
for large language or vision models, where numerous checkpoints
are readily available online. For instance, thousands of Stable Dif-
fusion model checkpoints can be directly downloaded from the
HuggingFace Hub [2]. Consequently, even though the server does
not have direct access to the client model during fine-tuning due to
model splitting, it still enjoys full access to the initial pre-trained
model or any other available model checkpoints.

We use the term “pseudo-whitebox” to denote the whitebox
access to the pre-trained version of the client’s model prior to
the split fine-tuning process. This pre-trained model has the same
structure and similar parameters as the model during or after fine-
tuning. Specifically, when employing LoRA [16] to fine-tune Stable
Diffusion, the parameters of Stable Diffusion remain frozen while
the parameters of the LoRA adapter are trained. In this scenario,
the disparity between the fine-tuned model and the pre-trained
model lies within the LoRA adapter trained with the client’s data
and the initial LoRA adapter with random parameters. Since the
structure of the LoRA adapter depends on the structure of the pre-
trained model, attackers do not need to know the LoRA adapter
beforehand, and a pseudo-whitebox access can be performed by
utilizing the pre-trained model and a randomly initialized LoRA
adapter. By having pseudo-whitebox access to the client model,
the server eliminates the necessity of stealing the client’s model
as Unsplit does [8] or constructing a functionally similar pseudo
client model as PCAT does [11].

The subject-oriented data for fine-tuning is unpredictable.
In split fine-tuning, a client and server can perform fine-tuning on
a pre-trained model without the server having any knowledge of

the downstream task or data. For instance, when utilizing Dream-
Booth [29] to fine-tune Stable Diffusion, a client can use a few
images of any subject for personalized text-to-image generation,
and these images may have significantly divergent data distribu-
tions compared to the available public datasets. This can have a
detrimental impact on the performance of data reconstruction at-
tacks in [7, 11, 13, 40], where it is assumed that the server can
access a few data samples for the same learning task. Similarly, data
reconstruction attacks such as GLASS [21], which rely on public
datasets with similar distributions to the client’s data, can also be
affected.

Nevertheless, in order to explore the potential risks in worst-
case scenarios, we assume that the adversary has the capability
to leverage publicly available datasets to aid in data reconstruc-
tion. These public datasets may exhibit either similar or distinct
distributions compared to the client’s private data for fine-tuning.
Additionally, during the fine-tuning process of the Stable Diffusion
model through DreamBooth, the input consists of both subject-
oriented images and a corresponding text prompt describing them.
The resulting intermediate output from the cut layer also encodes
information derived from the text prompt. We make the realistic
assumption that the server has no prior knowledge of the text
prompts used during the fine-tuning process.

In Table 1, we present a summary of threat models we have
derived for fine-tuning Stable Diffusion, in addition to the threat
models for model inversion attacks against centralized learning and
split learning as described in the existing literature. This summary
highlights the advantages and disadvantages in terms of the adver-
sary’s knowledge of the model and data, providing insights into
the unique risks associated with fine-tuning Stable Diffusion.

Optimization-based attacks present a greater risk to split fine-
tuning compared to traditional split learning, largely because the
server in split fine-tuning has a more extensive understanding of
the client-side model — nearly reaching the level of a centralized
learning setting. The server can gain pseudo-whitebox access to
the client’s model, meaning it possesses substantial knowledge of
the pre-trained model’s structure and parameters, even if these are
not fully up-to-date or evolving with training.

Training-based attacks require auxiliary data to train a model
that can reconstruct input data from intermediate outputs. The
less the server knows about the client model, the stronger the
assumptions it must make regarding the target data. When facing
training-based attacks, split fine-tuning presents both heightened
and reduced vulnerabilities compared to traditional split learning.
On one hand, the server’s better understanding of the client-side
model simplifies the construction of an auxiliary model. On the
other hand, the server’s limited knowledge of the client’s training
data makes it more difficult to effectively train the auxiliary model.

3.2 Attack Construction
As depicted in Fig. 4, we have developed both optimization-based
and training-based attacks within the split fine-tuning of Stable
Diffusion framework, in accordance with the practical threat model
discussed earlier. These attacks leverage different levels of knowl-
edge about the client model and its private data, as indicated by the
last two rows in Table 1. During any iteration of fine-tuning, once

5

Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam Anon.

Table 1: The threat models of data reconstruction attacks in split fine-tuning, compared to existing threat models of successful
data reconstruction attacks in other learning settings. Stronger capabilities or knowledge are indicated by darker colors. The
threat models of optimization-based attacks (Opt.) and training-based attacks (Tra.) for split fine-tuning of Stable Diffusion
are presented in separate rows.

Setting Knowledge of model Knowledge of data

None Network
structure Blackbox Pseudo-

whitebox
White-
box No data

Different
distribu-
tion

Similar
distribu-
tion

Training
data
subset

Centralized
learning [22] ✓ ✓

Split learning [8, 13] ✓ ✓
Split
fine-tuning Opt. ✓ ✓

Centralized
learning [7, 40] ✓ ✓ ✓

Split learning
[13] ✓ ✓ ✓ ✓
[11] ✓ ✓
[21] ✓ ✓

Split
fine-tuning Tra. ✓ ✓ ✓

the server receives an intermediate output 𝑧∗ from the client, it can
attempt to reconstruct the corresponding raw data input 𝑥∗ using
either of these two attacks.

Tra.

Dummy image

Pseudo-whitebox
client model

Loss

Dummy intermediate
output

Target intermediate
output

Auxiliary image

Pseudo-whitebox
client model

Decoder

Inverted auxiliary
intermediate output

Loss

Inverted result

Optimized result

Update

Update

Opt.

Dummy text prompt

Auxiliary text prompt

Figure 4: The optimization-based (Opt.) and the training-
based (Tra.) model inversion attacks in split fine-tuning.

(Opt.) Our optimization-based attack. In the optimization-
based attack, the server has pseudo-whitebox access to the client
model 𝑓𝑐 and the intermediate output 𝑧∗ transmitted from the client.
To execute the attack, the server initializes a dummy input com-
posed of a dummy image 𝑥 and a dummy text prompt 𝑝 . This input

is then fed into the pseudo-whitebox client model 𝑓𝑐 to generate
the corresponding dummy intermediate output 𝑧. A loss function is
employed to calculate the Euclidean distance between the dummy
intermediate output 𝑧 and the target intermediate output 𝑧∗. By
freezing the parameters of 𝑓𝑐 , the server can perform gradient de-
scent on the dummy data to minimize the loss. As a result, the
dummy data is optimized towards the target data.

In our initialization of the dummy image 𝑥 , we set all pixel val-
ues to 0.5, providing a neutral starting point for optimization. For
the dummy text prompt 𝑝 , we initialize it using padding values,
specifically the token 49407, which represents the end-of-text token
in Stable Diffusion. This token is used by the model when the input
prompt contains fewer tokens than its expected output dimension
of 77. In such cases, Stable Diffusion fills the gap by repeatedly ap-
pending the 49407 token to ensure the prompt reaches the required
length. We have two choices for the optimization objective: either
optimize the dummy image alone or optimize both the dummy im-
age and the dummy text prompt. The effectiveness of these choices
will be compared later in Section 4.1. The algorithm for this attack
is described in Algorithm 1.

(Tra.) Our training-based attack. In the training-based at-
tack, the server leverages the pseudo-whitebox client model 𝑓𝑐 and
auxiliary data to train an inversion model 𝑓 −1

𝑐 . In this setup, the
pseudo-whitebox client model 𝑓𝑐 works as an encoder that converts
raw data into intermediate outputs, while the inversion model 𝑓 −1

𝑐

acts as a decoder that converts intermediate outputs back into raw
data. To execute the attack, the server inputs the auxiliary images
𝑥 ′ and auxiliary text prompts 𝑝 ′ to 𝑓𝑐 and uses the corresponding
auxiliary intermediate outputs 𝑧′ to train 𝑓 −1

𝑐 . The loss function
used in this process is the Euclidean distance between the output of
the decoder 𝑓 −1

𝑐 , denoted as 𝑥 ′, and the original images 𝑥 ′. Once the
6

Unraveling Elevated Data Leakage in Split Learning for Fine-Tuning Stable Diffusion Models Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam

Algorithm 1 (Opt.) Optimization-based model inversion attack
against the split fine-tuning of Stable Diffusion

Input: Target intermediate output 𝑧∗
Output: Reconstructed image 𝑥∗
Initialize: Initial dummy image 𝑥1 and dummy text prompt 𝑝1;

pseudo-whitebox client model 𝑓𝑐 with pre-trained parameters
𝜃𝑐

1: for 𝑖 = 1 to 𝑁 do
2: 𝑧𝑖 = 𝑓𝑐 (𝑥𝑖 , 𝑝𝑖)
3: 𝑥𝑖+1 ← 𝑥𝑖 − 𝜂∇𝑥𝑖 ∥𝑧𝑖 , 𝑧∗∥2 or
(𝑥𝑖+1, 𝑝𝑖+1) ← (𝑥𝑖 , 𝑝𝑖) − 𝜂∇𝑥𝑖 ∥𝑧𝑖 , 𝑧∗∥2

4: end for
5: 𝑥∗ ← 𝑥𝑛+1

decoder is trained, the server can utilize it to infer the target inter-
mediate output 𝑧∗ and generate the reconstructed target image 𝑥∗.
The algorithm for this attack is described in detail in Algorithm 2.

Algorithm 2 (Tra.) Training-based model inversion attack against
the split fine-tuning of Stable Diffusion

Input: Target intermediate output 𝑧∗
Output: Reconstructed raw data 𝑥∗; Trained decoder 𝑓 −1

𝑐

Initialize: Pseudo-whitebox client model 𝑓𝑐 with pre-trained pa-
rameters 𝜃𝑐 ; decoder model 𝑓 −1

𝑐 with randomly generated pa-
rameters 𝜃−1

𝑐 ; auxiliary text prompt 𝑝 ′
1: Decoder training phase:
2: for each epoch do
3: for each batch of auxiliary data 𝑥 ′ do
4: 𝑧′ = 𝑓𝑐 (𝑥 ′, 𝑝 ′)
5: 𝑥 ′ = 𝑓 −1

𝑐 (𝑧′)
6: 𝜃−1

𝑐 ← 𝜃−1
𝑐 − 𝜂∇𝜃−1

𝑐

𝑥 ′, 𝑥 ′2

7: end for
8: end for
9: Decoder inference phase:
10: 𝑥∗ = 𝑓 −1

𝑐 (𝑧∗)

As the encoder and decoder serve opposite purposes — one en-
coding data into intermediate outputs, the other reconstructing the
raw data — the decoder can be designed by reversing the structure
of the encoder or by using layers that operate in the opposite direc-
tion. For example, in PyTorch, the Conv2d and ConvTranspose2d
layers are often paired in encoder-decoder architectures, where the
ConvTranspose2d layers upscale the latent representation back to
the original image dimensions, effectively reversing the downsam-
pling performed by the Conv2d layers.

In designing the decoder model architecture, since the adver-
sary has pseudo-whitebox access to the client-side model, we can
leverage the transparency of the encoder’s architecture to construct
a decoder by mirroring the encoder’s structure. By reversing the
order of these layers, the decoder can be constructed to effectively
learn the inverse mapping from intermediate outputs back to the
original data. In Table 2, we provide a brief overview of our decoder
model design for Stable Diffusion when the U-Net is split after a
specific DownBlock. This design will be used in the subsequent

evaluations to assess its performance in reconstructing client’s data
used for fine-tuning.

Table 2: The structure of the decoder network for Stable Dif-
fusion in our training-based attack.

Target model Cut layer (after) Decoder structure

Stable
Diffusion

U-Net’s
DownBlock 1/2/3

UNetMidBlock2DCrossAttn
CrossAttnUpBlock2D

nn.GroupNorm
nn.SiLU

nn.ConvTranspose2d
nn.ConvTranspose2d

nn.Conv2d

4 EVALUATION OF DATA RECONSTRUCTION
ATTACKS IN SPLIT FINE-TUNING OF
STABLE DIFFUSION

In this section, we conduct separate evaluations of the performance
of our optimization-based and training-based data reconstruction
attacks. Our analysis reveals that split fine-tuning with the Stable
Diffusion model exhibits distinctive vulnerabilities to data recon-
struction compared to conventional scenarios.

The pre-trained Stable Diffusion v1.4 model used in our ex-
periments is directly loaded from HuggingFace’s diffusers li-
brary. The fine-tuning process, employing DreamBooth [29] and
LoRA [16] techniques, is facilitated by the PEFT framework [23].
To prepare the client’s data for fine-tuning, we select high-quality
images with a resolution of at least 512× 512 from the DreamBooth
Dataset [29] and online resources [1]. In our experiments, we utilize
four datasets for different fine-tuning tasks, each consisting of 𝑁
images focused on a specific subject: a duck toy (𝑁 = 4), a dog
(𝑁 = 5), Elon Musk (𝑁 = 20), and Tim Cook (𝑁 = 20). In each
fine-tuning task, the model is trained iteratively using one image
of the subject per step, cycling through the dataset. Each image is
used for training a total of 100 times, meaning there are 100 × 𝑁
training steps in total. While data reconstruction can occur at any
training step, we choose to perform the attack around step 400 in
all experiments to ensure consistency, where each image in the
dataset has been used approximately 400/𝑁 times for training.

4.1 The Optimization-Based Attack
In all of the subsequent experiments, we have set the number of
optimization iterations to 20, 000, which is adequate for achieving
convergence through our observations.

Varying levels of knowledge about the clientmodel. In Fig. 5,
we demonstrate the benefits of split fine-tuning when the server
has pseudo-whitebox access to the client model, which refers to
having access to the pre-trained version of the client model before
fine-tuning. We compare this scenario to having full whitebox ac-
cess, where the server has complete access to the latest client model

7

Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam Anon.

at any given point during the fine-tuning process. Additionally, we
consider the case where the server is aware of the client model’s
structure and employs UnSplit [8] to construct a functionality simi-
lar to that of the client model for data reconstruction.

UnSplit typically starts with a clone model mirroring the struc-
ture of the client model, yet with random parameters. It then re-
constructs both the parameters and the target images from the
intermediate outputs. However, this attack is likely to fail when
dealing with more complex client model structures and learning
tasks, as the solution space could become excessively expansive for
convergence through gradient descent optimization [11]. In this
experiment, we employ Stable Diffusion v1.1 as the starting point
for UnSplit’s clone model to facilitate its performance.

We note that pseudo-whitebox access renders split learning more
vulnerable to model inversion attacks compared to conventional
split learning setups where the server may or may not even know
the network structure. The efficacy of the pseudo-whitebox attack is
comparable to that of the whitebox attack. Therefore, in contrast to
conventional split learning, split fine-tuning favors the adversary
by obviating the necessity to train a functionally similar client
model from scratch.

GT.

Whitebox

UnSplit

Pseudo.

Figure 5: A comparison of reconstructed images with differ-
ent levels of the adversary’s knowledge of the client’smodel.

Different choices for dummy text prompts and optimiza-
tion objectives. We investigate the effectiveness of our two meth-
ods for initializing the dummy text prompt and two options for
optimization objectives, compare them with the direct use of the
actual text prompt employed during fine-tuning as the dummy text
prompt, and present a representative example in Fig. 6. The actual
text prompt used for fine-tuning the target image on the left is a
sequence of 7 tokens, while the one for the right image is twice as
long, including 14 tokens.

As we can see from Fig. 6, optimizing the image and text prompt
together can harm performance, especially when the text prompt
is already optimal. When the text prompt used for fine-tuning is
longer, the reconstruction quality tends to be relatively worse. We
attribute this to the fact that the text encoder of Stable Diffusion
produces a fixed set of 77 token embedding vectors for a given text
prompt; if the given text prompt has fewer tokens, the remaining

GT.
I I+ P I I + P

True

Padding

Figure 6: A comparison of reconstructed images considering
the adversary’s varying knowledge of the text prompts and
different optimization objectives. The two ways of initializ-
ing the dummy text prompt used for the optimization-based
attack are represented by True and Padding. The optimiza-
tion of the dummy image only is denoted by I, while the opti-
mization of both the dummy image and dummy text prompt
is denoted by I+P.

GT. #Param.

DB1 6.04%

DB2 16.57%

DB3 36.10%

Figure 7: A comparison of reconstructed images when the
model is split at different layers. DB stands for DownBlock.
The numbers in the column of #Param. represents the ratio
of the training parameters at the client to the total number
of training parameters under different cut layers.

spaces are filled with padding values, i.e., 49407. If the actual text
prompt used for fine-tuning is short, it results in numerous padding
values in the token embeddings. In such cases, Padding dummy
text prompt closely resembles the token embeddings of the actual
text prompt. Conversely, if the actual prompt is sufficiently long,
a Padding dummy text prompt may not assist the attacker in re-
construction. Given this finding, we choose to employ the Padding
dummy text prompt and optimize the dummy image only for all
subsequent evaluations of our optimization-based attack.

Different cut layers. We examine the risk of information leak-
age when the network is cut at different layers and show the re-
constructed images in Fig. 7. The numbers listed under Params.

8

Unraveling Elevated Data Leakage in Split Learning for Fine-Tuning Stable Diffusion Models Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam

Duck toy

GT.

Same

FFHQ

Dog

GT.

Same

FFHQ

Elon Musk

GT.

Same

FFHQ

Tim Cook

GT.

Same

FFHQ

Figure 8: Results of our training-based attack (Tra.) on different fine-tuning tasks with different auxiliary data. In the row
labeled Same, the auxiliary dataset used is identical to the target private dataset used for fine-tuning.

represent the ratio of training parameters at the client to the total
number of parameters in the model for different cut layers. We
present this to illustrate the trade-off between data leakage from
intermediate output and computational overhead on the client side
when the model is split at various cut layers.

Unlike the findings in previous attacks on traditional convolu-
tional neural networks [8, 11, 13], we observe that in Stable Dif-
fusion, as the model split depth increases, the data leakage from
the intermediate output does not decrease. The reconstructed im-
ages exhibit fewer noises, and features become more pronounced.
What’s worse, the forwarding mechanism of the U-Net necessitates
the sharing of intermediate outputs from previous network blocks
with the server, even when the model is split at a later cut layer. This
suggests that, whether considering reducing computation overhead
or enhancing privacy preservation for the client, splitting the Sta-
ble Diffusion model after a shallow layer like DownBlock 1 is an
optimal choice. Despite this, it highlights the need for a defense
mechanism to protect the intermediate outputs from all blocks.

4.2 The Training-Based Attack
Auxiliary public data.We investigate the training-based attack
on four fine-tuning tasks and compare the reconstruction perfor-
mance when employing a public dataset FFHQ [18] versus directly
using the same fine-tuning dataset to train the decoder. FFHQ is a
high-quality (at 1024 × 1024 resolution) image dataset containing
human faces with considerable variations in age, ethnicity, and
image background. It also provides extensive coverage of facial

accessories such as eyeglasses, sunglasses, and hats. The data dis-
tribution of FFHQ is expected to be similar to that of celebrities’
faces but distinct from that of objects and animals.

As depicted in the row labeled Same in Fig. 8, when the server can
acquire a subset of the fine-tuning data for its decoder training, the
reconstruction precision is very promising. However, the reality
is that subject-oriented fine-tuning data can be heterogeneous,
and the server may only have the assistance of public datasets
where the data distribution can vary. This point is supported by
the results of using FFHQ as the auxiliary data to reconstruct the
duck toy and the dog. The reconstructed duck toy and dog images
using FFHQ data exhibit noticeably worse quality than the images
reconstructed using the same fine-tuning dataset, indicating the
negative impact of using heterogeneous fine-tuning datasets. Even
when the data distribution is similar, as in the case of using FFHQ to
reconstruct celebrities, the disparities between the Same and FFHQ
reconstructed images are smaller compared to the previous case
yet not all facial features can be restored, recognizing the identity
remains challenging.

Different cut layers.We also analyze the reconstruction perfor-
mance of the training-based attack at different model split depths,
as shown in Fig. 9. For this experiment, we use celebrities’ faces as
the fine-tuning data and FFHQ as the auxiliary dataset, both sharing
a similar distribution. It’s noticeable that as the cut layer deepens,
faces in the images become more distorted, and features appear
more fuzzy. Overall, the training-based attack exhibits lower recon-
struction capability than the optimization-based attack, especially
when the distribution of the auxiliary data diverges significantly
from that of the actual fine-tuning data.

9

Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam Anon.

GT.

DB1

DB2

DB3

Figure 9: A comparison of reconstructed images when the
model is split at different layers. The auxiliary dataset used
in this scenario is FFHQ.

5 OUR PROPOSED DEFENSE
Thus far, it has become clear that split fine-tuning of large genera-
tive models, such as Stable Diffusion, does not fully preserve privacy.
As a result, developing a robust defense mechanism to protect the
intermediate outputs, which may contain sensitive information
from private input data, is crucial. To address the heightened risk
of data leakage in split fine-tuning, we have designed a defense
mechanism that strikes a balance between ensuring privacy protec-
tion and maintaining minimal impact on model utility and training
efficiency.

5.1 The Design
Recent work such as [39, 44] employed dropout regularization tech-
niques, whichwas initially introduced in [31] to prevent deep neural
networks from overfitting, as a way to protect shared gradients
from gradient leakage attacks. To this end, we propose to apply an
additional dropout layer at the client side on the image latents after
the Variational Autoencoder described in Fig. 2. Instead of setting a
fixed dropout rate, we devise a method to quantify the information
leakage within the intermediate output in comparison to the input
image, in order to provide adaptive protection.

Quantifying information leakage through self-attack. It is
crucial to quantify the information leakage to accurately assess the
extent to which sensitive information from the input data could
be inferred by an adversary. However, quantifying the information
leakage I(𝑧, 𝑥) between the intermediate output 𝑧 and the input
data 𝑥 is inherently complex, particularly when working with high-
dimensional data and sophisticatedmodels like Stable Diffusion [15].
Inspired by a separate study on locally supervised learning [37], we
model the relationship between information leakageI(𝑧, 𝑥) and the
expected reconstruction error R(𝑥 |𝑧), which can be approximated
as follows:

I(𝑧, 𝑥) = H(𝑥) − H (𝑥 |𝑧) ≥ H (𝑥) − R(𝑥 |𝑧)
≈ max[H (𝑥) − R(𝑥 |𝑧)], (1)

whereH(𝑥) andH(𝑥 |𝑧) denote the marginal and conditional en-
tropy of 𝑠 , respectively.

Since H(𝑥) can be treated as a constant [15, 37], we focus on
estimating the reconstruction error R(𝑥 |𝑧), which serves as a proxy
for the amount of information that can be leaked from the inter-
mediate output. To achieve this, we let the client train an auxiliary
decoder 𝑓 −1

𝑅
to reverse the operation of the client-side model and

reconstruct the original input from the intermediate output 𝑧. This
decoder is trained on the client’s own data before fine-tuning be-
gins, making it highly effective at estimating the reconstruction
error for the specific data distribution of the client.

The architecture of the decoder follows the same structure, as
shown in Table 2, and is designed to efficiently map the intermedi-
ate output 𝑧 back to the input 𝑥 . We adopt the mean square error
between the reconstructed data and the input data to represent
R(𝑥 |𝑧). This functions as if the client conducts a self-attack and
utilizes the reconstruction result as a precaution. As the client has
comprehensive knowledge of their data, they can train a more effi-
cient decoder compared to other potential attackers. By leveraging
the self-attacking mechanism, the client can measure the level of
potential information leakage before sending intermediate results
to the server.

Adaptive dropout layer for image latents. During each step
of fine-tuning, the client forwards the input data to the cut layer and
obtains the reconstruction error R(𝑥 |𝑧) by inferencing the trained
decoder 𝑓 −1

𝑅
. Once the reconstruction error R(𝑥 |𝑧) is determined,

we use −R(𝑥 |𝑧) to represent I(𝑧, 𝑥) based on Eq. (1). The next step
is to adaptively protect the intermediate outputs by adjusting the
dropout rate based on the estimated risk of information leakage.

To achieve this, we apply the Sigmoid function to convert the
information leakage to the dropout rate 𝑝 as shown below:

𝑝 =
1

1 + 𝑒−R(𝑥 |𝑧)
, (2)

where the value of 𝑝 is restricted to the range [0, 0.5], ensuring
that the dropout rate remains non-negative and capped. A higher
reconstruction error indicates lower information leakage, leading
to a smaller dropout rate, which preserves more information for
model utility. Conversely, a smaller reconstruction error implies
greater potential for leakage, prompting the use of a higher dropout
rate to mask the sensitive information more effectively.

Unlike other defenses that perturb the intermediate output of
the cut layer [32], we opt to apply the dropout layer to the image
latents before they are fed to the U-Net, to ensure that sensitive
information is obscured at an earlier stage. This decision stems
from the understanding that focusing solely on safeguarding the
intermediate output at the cut layer may not be sufficient to fully
prevent data leakage in Stable Diffusionmodels, where intermediate
outputs from preceding network blocks must also be transmitted to
the server, potentially exposing sensitive information. By applying
the dropout earlier, we address the risk of leakage from multiple
stages of the network, thereby enhancing overall privacy.

5.2 Evaluation of Defenses
For all scenarios, the NoiseDefense’s noise and the dropout layer in
our defense are applied to the hidden states or pixel-related tensors
only in the intermediate output. Following the experimental setup
of the original paper, we set the weight of the distance correlation

10

Unraveling Elevated Data Leakage in Split Learning for Fine-Tuning Stable Diffusion Models Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam

No Defense NoPeek NoiseDefense Ours

Tr
ai

ni
ng

 L
os

s

0

0.5

1.0

1.5

Training Step (#)
0 100 200 300 400 500 600

C
LI

P
Sc

or
e

22

24

26

28

30

32

34

Training Step (#)
0 50 100 150 200 250 300 350 400 450 500

(a)

C
LI

P
D

ire
ct

io
na

l S
im

ila
rit

y

0

0.1

0.2

Training Step (#)
0 50 100 150 200 250 300 350 400 450 500

(b)

To
ta

l E
la

ps
ed

 T
im

e
(s

)

0

200

400

No NoPeek NoiseDefense Ours

(c)

Figure 10: The impact of employing different defense mech-
anisms on the fine-tuning of Stable Diffusion with the duck
toy images.

term in the NoPeek loss function to 1. For NoiseDefense, we set the
noise scale to 10.

Impact of defenses onmodel utility and training efficiency.
Fig. 10 plots the evolution of different metrics over the training steps
during the fine-tuning of the Stable Diffusion model on the duck
toy images. We apply the CLIP score to assess the consistency be-
tween the text prompt for inference and the image generated by the
model from a specific checkpoint [14]. In addition, we utilize CLIP
directional similarity to evaluate the coherence between the ground
truth image and the generated image, paired with their respective
ground truth description and the prompt for inference [10]. The
higher the CLIP score or CLIP directional similarity, the greater the
coherence, and consequently, the better the model utility through
fine-tuning. The prompt used for DreamBooth fine-tuning is “A
photo of a [V] duck toy”, and the prompt for inference is “A photo
of a [V] duck toy swimming in a pool”. The scores are averaged
over 10 generated images corresponding to the inference prompt,
sampled at every 5th checkpoint throughout the 500 fine-tuning
steps, to reduce bias. All the experiments are conducted on the
same machine equipped with an Intel i7-13700K 16-core processor,
128GB DDR5 physical memory, and an NVIDIA GeForce RTX 4090

24GB GDDR6 video card, in the environment of Ubuntu Linux 22.04
with CUDA version 12.3.

As shown in Figs. 10a and 10b, integrating NoiseDefense into
fine-tuning has the most detrimental effect on learning, signifi-
cantly reducing both CLIP score and CLIP directional similarity.
In contrast, NoPeek and our defense cause only a slight decline
in CLIP directional similarity compared to the baseline with no
defense. As shown in Fig. 10c, the total elapsed time remains sim-
ilar across all methods, with our defense causing a slight slow-
down of 1.8%, though the increase is marginal. This suggests that
while our method introduces minor computational overhead, it
does not significantly impact fine-tuning efficiency. The same trend
is observed for the brain MRI dataset, as demonstrated in Table 4
and Fig. 15 in Appendix A.3. In addition, more results on the impact
of fine-tuning effectiveness and efficiency for two smaller models,
ResNet-18 [12] and ViT [6], can be found in Appendix A.3, serving
as supporting evidence for our analysis.

The effectiveness of defenses against data reconstruction
attacks. In the effectiveness evaluations, we consider realistic set-
tings for the server, which has a pseudo-whitebox client model
and access to public datasets such as FFHQ. The Stable Diffusion
model is split after DownBlock 1. While DreamBooth fine-tuning
focuses on a small, subject-oriented dataset, these images predomi-
nantly feature a single object against a simple background. A more
complex dataset may influence the effectiveness of the attacks and
defenses we have studied. To investigate this, we conduct addi-
tional experiments on fine-tuning Stable Diffusion using medical
diagnostic images, which typically contain multiple structures and
more complex spatial relationships. Specifically, we utilize a high-
quality dataset of 13.4K brain MRI images (512× 512) with captions
from HuggingFace1. This dataset was released after the pre-trained
Stable Diffusion checkpoint and was included in its pre-training
phase. For this fine-tuning task, we set the batch size to 4 and the
training epoch to 1.

Brain MRI

Attack Defense MSE↑ LPIPS↑ PSNR↓ SSIM↓

Opt.

No Defense 1.7063 0.6011 -2.3206 -0.2346
NoPeek 1.7202 0.7079 -2.3557 -0.0905
NoiseDefense 1.7231 0.7118 -2.363 -0.0781
Ours 1.7046 0.6349 -2.3163 -0.2161

Tra.

No Defense 0.0639 0.5888 12.1806 0.4149
NoPeek 0.0642 0.5901 12.1437 0.4254
NoiseDefense 0.1158 0.6488 9.4463 0.1178
Ours 0.0658 0.5866 12.0605 0.3667

Table 3: Evaluation of different defensemechanisms against
optimization-based attack (Opt.) and training-based attack
(Tra.) on brain MRI images. Higher MSE and LPIPS values
indicate stronger defenses, while lower PSNR and SSIM val-
ues suggest increased resistance to reconstruction.

1https://huggingface.co/datasets/txz32102/MRI_512

11

Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam Anon.

Opt. Tra.

GT.

No Defense

NoPeek

NoiseDefense

Ours

Figure 11: Comparison of reconstructed images from the optimization-based attack (Opt.) and training-based attack (Tra.)
under different defense mechanisms.

Wepresent example reconstructed images from the duck toy, Tim
Cook face, and brain MRI datasets, generated by the two attacks un-
der different defenses, in Fig. 11. To provide a more comprehensive
analysis across a broader dataset, we also report statistical results
over 100 reconstructed brain MRI images per scenario in Table 3,
comparing them to the ground truth using multiple evaluation
metrics, including mean squared error (MSE), learned perceptual
image patch similarity (LPIPS), peak signal-to-noise ratio (PSNR),
and structural similarity index measure (SSIM). These metrics eval-
uate the difference between the reconstructed and target images
from multiple perspectives: MSE quantifies pixel-level difference
between images, LPIPS quantifies perceptual dissimilarity based
on deep neural network embeddings [42], PSNR measures signal
fidelity relative to noise, and SSIM captures structural similarity
by analyzing brightness, contrast, and spatial patterns [38]. These
metrics are widely used in prior studies to assess image quality and
similarity in data reconstruction attacks and defenses [11, 17, 21, 36].
Additional relevant results can be found in Appendix A.4.

Without any defense, in Fig. 11, brain MRI images exhibit the
highest resistance to reconstruction attacks compared to the duck
toy and Tim Cook face datasets, particularly in the training-based
attack (Tra.), where the reconstructed images appear mostly black,
with only faint outlines and minimal structural details visible. Un-
like single-object images or human faces, which have well-defined
shapes and high-contrast features that aid reconstruction, MRI im-
ages consist of complex textures and subtle variations, making them
significantly harder to recover. However, the optimization-based
attack (Opt.) remains more effective, managing to recover blurred
yet discernible structures.

NoiseDefense provides the strongest protection, as seen in the
heavily distorted reconstructed images, making it nearly impos-
sible to extract any meaningful features from the original data.

This is further confirmed by the high MSE and LPIPS values in Ta-
ble 3. However, this comes at a severe cost to model utility, as
NoiseDefense injects excessive noise into intermediate outputs, sig-
nificantly degrading fine-tuning performance. In contrast, NoPeek
offers moderate protection by enforcing distance correlation con-
straints, reducing reconstruction quality compared to no defense.
However, as seen in Fig. 11, it does not fully obfuscate intermedi-
ate representations, allowing some details to remain recoverable.
Our defense, on the other hand, provides stronger protection than
NoPeek by further degrading reconstruction quality, ensuring that
critical image features cannot be extracted. At the same time, unlike
NoiseDefense, which achieves the strongest privacy protection at
the expense of fine-tuning effectiveness, our defense maintains a
balanced trade-off, preserving model utility while preventing key
feature extraction. This makes our approach a more practical and ef-
ficient defense strategy, offering strong privacy protection without
compromising learning performance.

6 CONCLUDING REMARKS
In this paper, we conducted a thorough evaluation of the risk of data
leakage when using split learning to fine-tune large generative AI
models, with a specific focus on Stable Diffusion models. We show
that the attack is more effective as the adversary has access to the
pre-trained client model, and due to the unique U-Net structure of
Stable Diffusion models, splitting the model at a later layer may not
help mitigate data leakage. With our proposed defense mechanism,
which can be extended to safeguard other models as well, we are
able to ensure that split learning remains a privacy-preserving
training paradigm for collaborative fine-tuning when it comes to
large generative AI models, even under sophisticated attacks.

12

Unraveling Elevated Data Leakage in Split Learning for Fine-Tuning Stable Diffusion Models Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam

REFERENCES
[1] [n. d.]. gettyimages. https://www.gettyimages.ca/.
[2] [n. d.]. The Hugging Face Hub. https://huggingface.co/models.
[3] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In
Proc. the 2016 ACM SIGSAC Conference on Computer and Communications Security
(CCS). 308–318.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Ima-
geNet: A Large-Scale Hierarchical Image Database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition. 248–255.

[5] Tim Dockhorn, Tianshi Cao, Arash Vahdat, and Karsten Kreis. 2023. Differentially
Private Diffusion Models. Transactions on Machine Learning Research (2023).

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An Image is
Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proc. Inter-
national Conference on Learning Representations (ICLR).

[7] Alexey Dosovitskiy and Thomas Brox. 2016. Inverting Visual Representations
with Convolutional Networks. In Proc. the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 4829–4837.

[8] Ege Erdoğan, Alptekin Küpçü, and A Ercüment Çiçek. 2022. Unsplit: Data-
Oblivious Model Inversion, Model Stealing, and Label Inference Attacks against
Split Learning. In Proc. the 21st Workshop on Privacy in the Electronic Society
(WPES). 115–124.

[9] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model Inversion
Attacks That Exploit Confidence Information and Basic Countermeasures. In
Proc. the 22nd ACM SIGSAC Conference on Computer and Communications Security
(CCS). 1322–1333.

[10] Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano, Gal Chechik, and
Daniel Cohen-Or. 2022. StyleGAN-NADA: CLIP-Guided Domain Adaptation of
Image Generators. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–13.

[11] Xinben Gao and Lan Zhang. 2023. PCAT: Functionality and Data Stealing from
Split Learning by Pseudo-Client Attack. In Proc. the 32nd USENIX Security Sym-
posium. 5271–5288.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In Proc. the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 770–778.

[13] Zecheng He, Tianwei Zhang, and Ruby B. Lee. 2019. Model Inversion Attacks
against Collaborative Inference. In Proc. the 35th Annual Computer Security Ap-
plications Conference. 148–162.

[14] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi.
2021. CLIPScore: A Reference-free Evaluation Metric for Image Captioning. In
Proc. Conference on Empirical Methods in Natural Language Processing (EMNLP).

[15] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil
Bachman, Adam Trischler, and Yoshua Bengio. 2019. Learning Deep Representa-
tions by Mutual Information Estimation and Maximization. In Proc. International
Conference on Learning Representations (ICLR).

[16] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-Rank Adaptation of Large
Language Models. In Proc. International Conference on Learning Representations
(ICLR).

[17] Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. 2021.
Evaluating Gradient Inversion Attacks and Defenses in Federated Learning.
Advances in Neural Information Processing Systems (NeurIPS) 34 (2021), 7232–
7241.

[18] Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Archi-
tecture for Generative Adversarial Networks. In Proc. the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 4401–4410.

[19] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. [n. d.]. CIFAR-100 (Canadian
Institute for Advanced Research). https://www.cs.toronto.edu/~kriz/cifar.html.
Accessed: 2023-10.

[20] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-Based Learning
Applied to Document Recognition. Proc. the IEEE 86, 11 (1998), 2278–2324.

[21] Ziang Li, Mengda Yang, Yaxin Liu, Juan Wang, Hongxin Hu, Wenzhe Yi, and
Xiaoyang Xu. 2023. GAN You See Me? Enhanced Data Reconstruction Attacks
against Split Inference. In Advances in Neural Information Processing Systems
(NeurIPS).

[22] A. Mahendran and A. Vedaldi. 2015. Understanding Deep Image Representations
by Inverting Them. In Proc. the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 5188–5196.

[23] Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, and Sayak
Paul. 2022. PEFT: State-of-the-Art Parameter-Efficient Fine-Tuning Methods.
https://github.com/huggingface/peft.

[24] Ilya Mironov. 2017. Rényi Differential Privacy. In IEEE 30th Computer Security
Foundations Symposium (CSF). 263–275.

[25] T. Orekondy, B. Schiele, and M. Fritz. 2019. Knockoff Nets: Stealing Functionality
of Black-Box Models. In Proc. the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). 4949–4958.
[26] Dario Pasquini, Giuseppe Ateniese, and Massimo Bernaschi. 2021. Unleashing

the Tiger: Inference Attacks on Split Learning. In Proc. the 28th ACM SIGSAC
Conference on Computer and Communications Security (CCS). 2113–2129.

[27] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-Resolution Image Synthesis with Latent Diffusion Models. In
Proc. the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
10684–10695.

[28] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. In Proc. International Conference
on Medical Image Computing and Computer-Assisted Intervention (MICCAI). 234–
241.

[29] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and
Kfir Aberman. 2023. Dreambooth: Fine Tuning Text-to-Image Diffusion Models
for Subject-Driven Generation. In Proc. the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 22500–22510.

[30] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In Proc. International Conference on
Learning Representations (ICLR).

[31] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research 15, 56 (2014), 1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html

[32] Tom Titcombe, Adam J Hall, Pavlos Papadopoulos, and Daniele Romanini. 2021.
Practical Defences against Model Inversion Attacks for Split Neural Networks.
arXiv preprint arXiv:2104.05743, ICLRWorkshop on Distributed and Private Machine
Learning (2021).

[33] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
2016. Stealing Machine Learning Models via Prediction APIs. In Proc. the 25th
USENIX Security Symposium. 601–618.

[34] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. 2018.
Split Learning for Health: DistributedDeep Learningwithout Sharing RawPatient
Data. arXiv preprint arXiv:1812.00564, ICLR AI for Social Good Workshop (2018).

[35] Praneeth Vepakomma, Abhishek Singh, Otkrist Gupta, and Ramesh Raskar. 2020.
NoPeek: Information Leakage Reduction to Share Activations in Distributed Deep
Learning. In Proc. the 20th International Conference on Data Mining Workshops
(ICDMW). 933–942.

[36] Fei Wang, Ethan Hugh, and Baochun Li. 2023. More than Enough is Too Much:
Adaptive Defenses against Gradient Leakage in Production Federated Learning.
In Proc. IEEE Conference on Computer Communications (INFOCOM). 1–10.

[37] Yulin Wang, Zanlin Ni, Shiji Song, Le Yang, and Gao Huang. 2021. Revisiting
Locally Supervised Learning: an Alternative to End-to-end Training. In Proc. In-
ternational Conference on Learning Representations (ICLR).

[38] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image Quality
Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on
Image Processing 13, 4 (2004), 600–612.

[39] Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Mehmet Emre Gursoy,
Stacey Truex, and YanzhaoWu. 2020. A Framework for Evaluating Client Privacy
Leakages in Federated Learning. In Proc. 25th European Symposium on Research
in Computer Security (ESORICS). 545–566.

[40] Ziqi Yang, Jiyi Zhang, Ee-Chien Chang, and Zhenkai Liang. 2019. Neural Net-
work Inversion in Adversarial Setting via Background Knowledge Alignment. In
Proc. the 26th ACM SIGSAC Conference on Computer and Communications Security
(CCS). 225–240.

[41] Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine,
Karthik Prasad, Mani Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj,
Jessica Zhao, Graham Cormode, and Ilya Mironov. 2021. Opacus: User-Friendly
Differential Privacy Library in PyTorch. In NeurIPS 2021 Workshop Privacy in
Machine Learning.

[42] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. 2018. The Unreason-
able Effectiveness of Deep Features as a Perceptual Metric. In Proc. the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 586–595.

[43] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song. 2020. The Secret Revealer:
Generative Model-Inversion Attacks Against Deep Neural Networks. In Proc. the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 250–
258.

[44] Yanchong Zheng. 2021. Dropout against Deep Leakage from Gradients. arXiv
preprint arXiv:2108.11106 (2021).

13

https://www.gettyimages.ca/
https://huggingface.co/models
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/huggingface/peft
http://jmlr.org/papers/v15/srivastava14a.html

Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam Anon.

A APPENDIX
A.1 Further Discussion on the Threat Model

Assumption
In the attacker’s assumption of knowledge about the client-side
model, model architecture is a crucial factor [8, 26, 33]. Minor modi-
fications, such as small changes in layer width, activation functions,
or dropout rates, may still allow the attack to succeed but with de-
graded reconstruction quality, as the attacker’s model only approx-
imates the intermediate features. In contrast, major modifications,
including reordering layers, adding non-linear transformations, or
changing feature dimensionality, can significantly disrupt feature
alignment, often rendering the attack ineffective. The greater the
architectural divergence, the harder it becomes for the attacker to
reconstruct meaningful data, highlighting architectural modifica-
tions as a viable defense mechanism.

For the optimization-based attack, the attacker refines a dummy
image using a pseudo-whitebox client model to match the target
intermediate outputs. Significant architectural modifications dis-
rupt this alignment, degrading accuracy or making optimization
infeasible. Similarly, in the training-based attack, the attacker trains
a decoder to map the client’s intermediate outputs back to training
data by leveraging a public dataset and a pseudo-whitebox client
model. If the client modifies its architecture, the feature space of the
intermediate outputs shifts, preventing the decoder from generaliz-
ing. However, the attacker could train a functionally similar model,
even without direct knowledge of the client’s architecture [11]. In
this case, the learned mapping remains feasible but still less effec-
tive compared to having full architectural knowledge. Maintaining
or improving attack effectiveness while relaxing the attacker’s as-
sumptions about data or model knowledge remains a challenging
but important direction for further research.

A.2 Discussion on the Application of DP-SGD
in Split Learning for Fine-Tuning Stable
Diffusion Models

We evaluate the use of differentially private stochastic gradient de-
scent (DP-SGD) citeabadi2016dp as a general defense for protecting
Stable Diffusion against data reconstruction attacks during its split
fine-tuning. We implement (𝜀, 𝛿)-DP using the DP-SGD library in
PyTorch, Opacus [41], for both training and privacy accounting [5],
setting the target failure probability to 𝛿 = 10−5. By adjusting the
noise multiplier 𝜎 in Opacus, which controls the amount of noise
added to gradients, the framework provides an estimate of 𝜀 using
the Rényi differential privacy [24] accountant. We present attack
performance under different noise multiplier 𝜎 settings in Fig. 12,
along with the corresponding evolution of 𝜀 in Fig. 13. On top
of Fig. 10, we also overlay the CLIP score and CLIP directional
similarity for checkpoints fine-tuned with DP-SGD using 𝜎 = 20,
as shown in Fig. 14.

The attack performance under DP-SGD fine-tuning remains
largely unaffected, regardless of the privacy budget 𝜀. Even with
strong privacy protection given by low 𝜀 (high noise multiplier 𝜎),
the reconstructed images still retain distinguishable object shapes
and textures, indicating that DP-SGD does not effectively prevent

GT.

𝜎 = 20

𝜎 = 30

𝜎 = 40

𝜎 = 100

Figure 12: Reconstructed duck toy images from attacks un-
der DP-SGD fine-tuning with varying levels of added noise.

σ= 20
σ= 30
σ= 40
σ= 100

Pr
iv

ac
y

Bu
dg

et
 ε

0

2

4

Training Step (#)
0 50 100 150 200 250 300 350 400 450 500

Figure 13: Estimate of 𝜀 during DP-SGD fine-tuning for dif-
ferent noise multipliers 𝜎 , with 𝛿 = 10−5.

data reconstruction in split learning. This aligns with a fundamen-
tal limitation of DP-SGD in this split fine-tuning setting: it applies
noise to gradients rather than directly perturbing the intermediate
outputs. Since split fine-tuning transmits unaltered intermediate ac-
tivations to the server, the added noise in gradient updates does not
sufficiently disrupt the reconstruction process. As a result, while DP-
SGD may protect model parameters and prevent gradient-based

14

Unraveling Elevated Data Leakage in Split Learning for Fine-Tuning Stable Diffusion Models Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam

privacy attacks, it does not mitigate leakage from intermediate
representations, leaving split learning models vulnerable to data
reconstruction attacks from intermediate outputs.

No Defense NoPeek NoiseDefense DP-SGD Ours

C
LI

P
D

ire
ct

io
na

l S
im

ila
rit

y

−0.05

0

0.05

0.10

0.15

0.20

Training Step (#)
0 50 100 150 200 250 300 350 400 450 500

C
LI

P
Sc

or
e

22

24

26

28

30

32

34

Training Step (#)
0 50 100 150 200 250 300 350 400 450 500

(a)

C
LI

P
D

ire
ct

io
na

l S
im

ila
rit

y

0

0.1

0.2

Training Step (#)
0 50 100 150 200 250 300 350 400 450 500

(b)

Figure 14: Themodel utility when applying DP-SGD for fine-
tuning Stable Diffusion on the duck toy dataset.

A.3 More Results on Impact of Defenses on
Model Utility and Training Efficiency

Table 4 and Fig. 15 present the impact of different defenses on model
utility during the fine-tuning of Stable Diffusion on the brain MRI
dataset, serving as a complementary analysis to Fig. 10 in Section 5.

Defense CLIP Score CLIP Directional Similarity

No Defense 33.9729 0.014
NoPeek 33.489 -0.002
NoiseDefense 30.9157 0.0066
Ours 32.7914 0.0393

Table 4: Model utility, measured by CLIP score and CLIP di-
rectional similarity, when applying different defenses after
250 fine-tuning steps on brain MRI images.

To assess the impact on other models and datasets, we present
additional results in Fig. 16, which shows the increase in model
accuracy and the decrease in training loss over time for two smaller
models, ResNet-18 [12] and ViT [6]. In these cases, the CIFAR-
10 [19] and Mini ImageNet [4] datasets are used, both of which
are much larger in scale compared to the DreamBooth dataset em-
ployed for fine-tuning Stable Diffusion. In Fig. 16a, we can see that
both NoiseDefense and our defense caused a 3.0% drop in ultimate

To
ta

l E
la

ps
ed

 T
im

e
(s

)

0

200

400

No NoPeek NoiseDefense Ours

Figure 15: Total elapsed time when applying different de-
fenses after 250 fine-tuning steps on brain MRI images. Our
defense has caused a slight slowdown of 3.97%.

accuracy, while NoPeek achieved similar accuracy compared to
having no defense. However, NoPeek drastically slowed down the
training process because the pairwise distance correlation included
in their loss function requires significant computation, especially
for high-dimensional input and smashed data.

The gap between the impact of different defenses becomes more
apparent in the more complex model shown in Fig. 16b. Even after
the fine-tuning is complete, we observed that NoPeek experienced
only a 19.46% drop in loss while taking approximately 16× longer.
This could be due to an imbalance between the weights of the dis-
tance correlation loss and the classification loss in the loss function.
Similarly, in the case of NoiseDefense, a fixed noise scale can have
completely different effects on the two models, resulting in a 36%
lower drop in loss compared to having no defense for ViT. There-
fore, it is important carefully tune the hyperparameters in these
two defenses to achieve optimal performance. Overall, our defense
with adaptive dropout rates for different models and data has the
least impact on model utility compared to other defenses.

No Defense
NoiseDefense
NoPeek
Ours

till 5123s

Te
st

 A
cc

ur
ac

y
(%

)

50

60

70

80

Elapsed Time (s)
0 1000 2000 3000

Within 50 Rounds of Fine-Tuning

(a) ResNet-18 & CIFAR-10

till 16317s
Lo

ss

0

2

4

Elapsed Time (s)
0 500 1000

Within 300 Rounds of Fine-Tuning

(b) ViT & Mini ImageNet

Figure 16: The impact of different defense strategies on the
fine-tuning of two smallermodels with larger datasets. Each
circle along the blue curve in (b) represents the loss for each
step in the fine-tuning process.

A.4 More Results on the Effectiveness of
Defenses against Data Reconstruction
Attacks

Fig. 17 provides additional examples of reconstructed images
from the optimization-based attack on brain MRI dataset, serving
as a complementary analysis in Section 4.1.

15

Submitted to ASIA CCS ’25, August 25–29, 2025, Ha Noi, Vietnam Anon.

GT.

Opt.

Figure 17: Additional reconstructed images from the optimization-based attack (Opt.) on the Brain MRI dataset. The Stable
Diffusion model is split after DownBlock 1.

GT.

No Defense

NoPeek

NoiseDefense

Ours

Figure 18: Additional comparisons of reconstructed images from the training-based attack (Tra.) using different defensemech-
anisms on the Brain MRI dataset.

Fig. 18 provides additional examples of reconstructed brain MRI
images from the training-based attack under different defenses, serv-
ing as a complementary analysis to Fig. 11 and Table 3 in Section 5.
The increased complexity of MRI images reduces the effectiveness
of the training-based attack compared to subject-oriented or face
datasets.

Table 5 presents quantitative evaluations for attacks on the duck
toy dataset, serving as a complementary analysis to Fig. 11 and Ta-
ble 3 in Section 5.

Duck toy

Attack Defense MSE↑ LPIPS↑ PSNR↓ SSIM↓

Opt.

No Defense 0.7250 0.7093 1.6961 -0.0653
NoPeek 0.6583 0.7266 1.8759 -0.1442
NoiseDefense 0.7676 0.7846 1.6615 -0.0652
Ours 0.7907 0.8010 1.8712 -0.1379

Tra.

No Defense 0.1674 0.7637 7.9482 0.3181
NoPeek 0.1504 0.7492 8.4165 0.4026
NoiseDefense 0.2001 0.7951 7.1373 0.1294
Ours 0.1708 0.7900 7.8887 0.3707

Table 5: Evaluation of different defensemechanisms against
optimization-based attack (Opt.) and training-based attack
(Tra.) on duck toy images.

16

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Split Learning
	2.2 Data Reconstruction in Split Learning
	2.3 Fine-Tuning Stable Diffusion
	2.4 Splitting The U-Net

	3 Data Reconstruction Attacks on Split Fine-Tuning Stable Diffusion
	3.1 Threat Model
	3.2 Attack Construction

	4 Evaluation of Data Reconstruction Attacks in Split Fine-Tuning of Stable Diffusion
	4.1 The Optimization-Based Attack
	4.2 The Training-Based Attack

	5 Our Proposed Defense
	5.1 The Design
	5.2 Evaluation of Defenses

	6 Concluding Remarks
	References
	A Appendix
	A.1 Further Discussion on the Threat Model Assumption
	A.2 Discussion on the Application of DP-SGD in Split Learning for Fine-Tuning Stable Diffusion Models
	A.3 More Results on Impact of Defenses on Model Utility and Training Efficiency
	A.4 More Results on the Effectiveness of Defenses against Data Reconstruction Attacks

