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Introduces a regularization term into loss

incrementally are not important to other clients. Hence, chang-
ing critical parameters to other clients will interfere with their
learning process and should be avoided. While changing less
critical parameters will not erase or reverse the knowledge
acquired by the other clients.

We propose adding a regularization term to the training of
the critic and actor of our clients such that we penalize changes
to important parameters. Eqn 5 represents the local clients
model (actor or critic) loss, respectively:

li,model = Li(✓) + �⌦i,t,model(✓i � ✓t)
2, (5)

where ✓i is the current model parameters for client i, ✓t are
the model parameters received at the beginning of round t,
⌦i,t,model are importance weights calculated for the models for
client i at the beginning of the round t. Adding a regularization
term above to the local clients’ loss will be referred to as
“interference avoidance” or IA for short and we will show the
ablation study of IA in the next section. A summary of all
steps of the Cascade algorithm is displayed in Alg. 1.

Algorithm 1 Cascade Algorithm
1: procedure LOCAL UPDATE
2: Input: node index i, models �t�1, ✓t�1

3: Except 1st round, get ⌦i,t,critic and ⌦i,t,actor as (4)
4: for all episodes do
5: for all updates do
6: Get L(�t) and r✓tJ as (1) and (2)
7: Get li,critic and li,actor as (5)
8: Update �t and ✓t using li,critic and li,actor
9: Get rcritic,i using (3)

10: return rcritic,i, ��i,t, �✓i,t

11: procedure GLOBAL UPDATE
12: Input: difficulty score and local updates rcritic,i,

��i,t, �✓i,t

13: Aggregate the elite �%ile clients, ��t =
PI

i
1
I��i,t,

�✓t =
PI

i
1
I�✓i,t, where I is the number of clients with

rcritic,i < �%ile
14: Get �t = �t�1 +��t and ✓t = ✓t�1 +�✓t

15: return �t, ✓t

Communication overhead: In summary, the communication
overhead of Cascade is two scalars communicated from the
server to each client, which is I and if their updates were
aggregated into the global model to help the clients calculate
⌦. From clients to servers, apart from sending the model
updates, the clients send their difficulty level metric, which
is also a scalar value.

V. EXPERIMENTAL RESULTS

A. Implementation and experimental setup

Cascade is built on top of Plato1, an open-source federated
learning framework built to emulate real-life scenarios. We
use the Pensieve [1] RL-interface implementation in Park [11],

1https://github.com/TL-System/plato

which simulates the buffer, playback and a network trace. Cas-
cade can be applied to training other networking algorithms
too, such as congestion control or networking adaptive coding,
due to its usage of the training dynamics of a model instead
of the features of a networking algorithm.

Clients are trained and tested on real-life traces collected
by streaming a pre-recorded video over 290 traces from FCC
broadband measurements (labeled “FCC”) and 310 cellular
traces (labeled “Norway”) [12]. During the training process,
each client has one of 6 different training distributions of
traces that simulate a real-world throughput observed by an
agent. Each client trains for 400 episodes, where for every
episode one trace file is randomly sampled from 10 files from
the same network environment. Each episode has a length
of 490 steps, as set by Park [11]. After training for a fixed
number of episodes, clients report their local updates and the
difficulty score of Cascade, rcritic, to the server. After the
server aggregates the local clients’ updates based on the global
model aggregation algorithm, the server will test the global
model on the 10 traces for each client.

Baselines. We compare Cascade with a number of base-
lines. They are (i) RL-ABR: the training is conducted in a
centralized behavior, sampling one trace file every episode
from the training distributions of all clients combined; (ii)
FedAvg [13]: clients are randomly selected and their local
updates are aggregated with equal weights; (iii) FedADP [14]:
clients are randomly selected but their local updates of clients
are weighted according to the alignment of their gradient
vector with the gradient vector of the global model.

Evaluation metrics We analyze the performance of Cas-
cade and other FL algorithms using four main metrics: (i)
cumulative average reward, which is the sum of the average re-
wards achieved over the training distribution of each client, (ii)
the model skewness calculated across the training distribution
of each client, (iii) the average reward of the converged model
evaluated over 30 traces, which were not used during the
training distribution, and (iv) the convergence speed defined
as the number of rounds to reach the average reward of the
last 20 rounds. The last 20 rounds have stable reward values.

B. Number of clients participating

We train Cascade and other algorithms over three different
settings of experiments with: 6, 12 and 18 clients participating.
Each experiment is run over three different seeds, and the
average reward over three seeds is reported. At the end of
each training round, we get the average reward over all the
traces in each of the 6 training environments and add them
to get the cumulative average reward. Note that the average
reward for each distribution is used only for evaluation, not
for training.

As shown in Table I, Cascade’s asymptotic reward, which is
the average cumulative average reward in the last 30 rounds,
is 510, which is 23.8% and 20.9% higher than FedAvg
and FedADP, respectively. This was at the expense of a
lower convergence speed. In addition, the model skewness of
Cascade is lower by 15% and 21% compared to FedAvg and

to penalize changes to important parameters

Important weight matrix 

Change to weights
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Adaptive Bitrate (ABR) Selection

The objective of each client: high video quality, low rebuffering 
time, low variation in video quality
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Evaluation Metrics

1⃣ Asymptotic reward: summation of average reward in all tasks 
(environments) the model was trained on 

2⃣ Model Skewness 

 

3⃣ Average test reward: average reward on traces not used during 
training to test generalization

Z

∑
i=1

(Gi − Gavg)2
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FedADP. This illustrates that Cascade is better at avoiding
interference between clients’ knowledge and does not favor
some clients more than others.

Limitations if clients have the same environment distri-
bution. With 12 and 18 clients participating, the 6 environ-
ment distributions are replicated twice and thrice, respectively.
Through replicating environment distributions, we aim to study
the effect of interference avoidance between clients running on
similar environment distributions. Intuitively, the model will
have parameters important for each client and few parame-
ters to be shared, i.e. Cascade avoids sharing of knowledge
across clients with similar tasks. This decreases the asymptotic
reward by 3–5% compared to FedAvg and FedADP since
the model is not used efficiently. In terms of model skewness
and convergence speed, Cascade is within 3–5% comparable
behavior with FedAvg and FedADP as observed in Table I.
Therefore, in the training stage, we encourage selecting distant
clients to reduce the chance of having clients with similar
environment distributions.

In Fig. 2, we plot the cumulative average reward over
the 6 training distributions vs. the training round for 70
rounds for the case of 6 clients participating. When 6 clients
were participating, we observe that Cascade has the highest
cumulative reward asymptotically. It is noteworthy that in
Fig. 2 RL-ABR converges to an unstable asymptotic reward
demonstrating the challenge in learning while observing a
diverse set of environments. All federated learning algorithms
demonstrate a stable convergence, which reveals the benefit
of federated reinforcement learning in settings where learning
happens in a wide range of environments.

TABLE I: The asymptotic cumulative average reward, the
number of training rounds required to reach this reward, and
model skewness for Cascade vs. FedAvg and FedADP

# of Asymptotic Rounds to Model
clients reward converge skewness

(higher) (lower) (lower)
FedAvg 6 412 37 373
FedADP 6 422 27 402
Cascade 6 510 41 319
FedAvg 12 445 33 340
FedADP 12 420 30 386
Cascade 12 420 30 360
FedAvg 18 425 40 397
FedADP 18 424 27 383
Cascade 18 411 33 371

C. Generalization

We test the generalization of the converged models, when 6
clients were participating, from all baselines with Cascade.
In Fig. 3, we plot the average reward of each algorithm
including RL-ABR on 30 different traces from different net-
work environments that were not in the training environment
distribution. We observe that Cascade is having almost 45%
higher average reward compared to FL algorithms: FedAvg
and FedADP. This exhibits how curriculum learning can help
in generalization in FL.
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Fig. 2: Comparison of cumulative average reward over 6
different distributions across different algorithms for 6 clients
selected for global aggregation.

Table 1

Seed 5 Seed 10 Seed 15 Average STD Error

FedAvg -57.96273954649 -87.1385207598433 -73.7015060153108 -72.934255440548 8.43105484574183

FedADP -59.1772890563027 -87.6712320737885 -96.9335892121564 -81.2607034474159 11.3608348918098

IA � = 1 -134.03706123908 -75.7857056264511 -38.939965922878 -82.9209109294697 27.6830137474943

RL-ABR 148.448694313796 58.4097065243533 51.7495990030025 86.2026666137173 31.1823413242079

Critic grad -66.3327596011104 -106.308582886929 -35.3195659376033 -69.3203028085476 20.5471343717329

Cascade -83.725290109289 -18.5059183081535 -18.1812136357232 -40.1374740177219 21.7941096170906

Critic grad � = 2 -74.9728838292271 -72.693612190106 -62.5109281373778 -70.0591413855703 3.83103172489113

Critic grad � = 3 -79.1952307983065 -75.9291241172861 -28.7739482351632 -61.2994343835853 16.2900511571363

Critic grad � = 4 -88.6849352210058 -101.29506974917 -29.6165195542063 -73.1988415081274 22.0931208250896
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Fig. 3: Comparison of generalization results across different
algorithms when 6 clients participate in global aggregation

However, RL-ABR shows better generalization than all
federated learning algorithms. Our insight is that RL-ABR
avoids overfitting to specific network environments by training
sequentially on diverse settings, unlike federated learning,
where each client’s overfitting may lead to a globally overfitted
model.

D. Ablation Studies

Additionally, we study the effect of curriculum learning and
interference avoidance, if each is used solely. We study the
effect of �, varying it from 0 to 3, on asymptotic behav-
ior, convergence, model skewness and generalization when 6
clients are participating. When � = 0, curriculum learning
is used without interference avoidance. “IA � = 1” refers to
interference avoidance without curriculum learning.

In Fig. 4 and Table II, we observe Cascade with � = 1
having the best asymptotic reward, model skewness and av-
erage reward over out-of-training distribution (or test reward).
Increasing � beyond 1 seems to avoid interference excessively

FedADP. This illustrates that Cascade is better at avoiding
interference between clients’ knowledge and does not favor
some clients more than others.

Limitations if clients have the same environment distri-
bution. With 12 and 18 clients participating, the 6 environ-
ment distributions are replicated twice and thrice, respectively.
Through replicating environment distributions, we aim to study
the effect of interference avoidance between clients running on
similar environment distributions. Intuitively, the model will
have parameters important for each client and few parame-
ters to be shared, i.e. Cascade avoids sharing of knowledge
across clients with similar tasks. This decreases the asymptotic
reward by 3–5% compared to FedAvg and FedADP since
the model is not used efficiently. In terms of model skewness
and convergence speed, Cascade is within 3–5% comparable
behavior with FedAvg and FedADP as observed in Table I.
Therefore, in the training stage, we encourage selecting distant
clients to reduce the chance of having clients with similar
environment distributions.

In Fig. 2, we plot the cumulative average reward over
the 6 training distributions vs. the training round for 70
rounds for the case of 6 clients participating. When 6 clients
were participating, we observe that Cascade has the highest
cumulative reward asymptotically. It is noteworthy that in
Fig. 2 RL-ABR converges to an unstable asymptotic reward
demonstrating the challenge in learning while observing a
diverse set of environments. All federated learning algorithms
demonstrate a stable convergence, which reveals the benefit
of federated reinforcement learning in settings where learning
happens in a wide range of environments.

TABLE I: The asymptotic cumulative average reward, the
number of training rounds required to reach this reward, and
model skewness for Cascade vs. FedAvg and FedADP

# of Asymptotic Rounds to Model
clients reward converge skewness

(higher) (lower) (lower)
FedAvg 6 412 37 373
FedADP 6 422 27 402
Cascade 6 510 41 319
FedAvg 12 445 33 340
FedADP 12 420 30 386
Cascade 12 420 30 360
FedAvg 18 425 40 397
FedADP 18 424 27 383
Cascade 18 411 33 371

C. Generalization

We test the generalization of the converged models, when 6
clients were participating, from all baselines with Cascade.
In Fig. 3, we plot the average reward of each algorithm
including RL-ABR on 30 different traces from different net-
work environments that were not in the training environment
distribution. We observe that Cascade is having almost 45%
higher average reward compared to FL algorithms: FedAvg
and FedADP. This exhibits how curriculum learning can help
in generalization in FL.
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Fig. 2: Comparison of cumulative average reward over 6
different distributions across different algorithms for 6 clients
selected for global aggregation.

Table 1

Seed 5 Seed 10 Seed 15 Average STD Error

FedAvg -57.96273954649 -87.1385207598433 -73.7015060153108 -72.934255440548 8.43105484574183

FedADP -59.1772890563027 -87.6712320737885 -96.9335892121564 -81.2607034474159 11.3608348918098

IA � = 1 -134.03706123908 -75.7857056264511 -38.939965922878 -82.9209109294697 27.6830137474943

RL-ABR 148.448694313796 58.4097065243533 51.7495990030025 86.2026666137173 31.1823413242079

Critic grad -66.3327596011104 -106.308582886929 -35.3195659376033 -69.3203028085476 20.5471343717329

Cascade -83.725290109289 -18.5059183081535 -18.1812136357232 -40.1374740177219 21.7941096170906

Critic grad � = 2 -74.9728838292271 -72.693612190106 -62.5109281373778 -70.0591413855703 3.83103172489113

Critic grad � = 3 -79.1952307983065 -75.9291241172861 -28.7739482351632 -61.2994343835853 16.2900511571363

Critic grad � = 4 -88.6849352210058 -101.29506974917 -29.6165195542063 -73.1988415081274 22.0931208250896
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Fig. 3: Comparison of generalization results across different
algorithms when 6 clients participate in global aggregation

However, RL-ABR shows better generalization than all
federated learning algorithms. Our insight is that RL-ABR
avoids overfitting to specific network environments by training
sequentially on diverse settings, unlike federated learning,
where each client’s overfitting may lead to a globally overfitted
model.

D. Ablation Studies

Additionally, we study the effect of curriculum learning and
interference avoidance, if each is used solely. We study the
effect of �, varying it from 0 to 3, on asymptotic behav-
ior, convergence, model skewness and generalization when 6
clients are participating. When � = 0, curriculum learning
is used without interference avoidance. “IA � = 1” refers to
interference avoidance without curriculum learning.

In Fig. 4 and Table II, we observe Cascade with � = 1
having the best asymptotic reward, model skewness and av-
erage reward over out-of-training distribution (or test reward).
Increasing � beyond 1 seems to avoid interference excessively
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Fig. 4: Effect of � and curriculum learning when K = 6,
where IA is only interference avoidance without curriculum
learning and Cascade � is curriculum learning with interfer-
ence avoidance but with different �

to limit the accumulation of knowledge of tasks. Hence, the
asymptotic reward decreases with increase in �. Interestingly,
interference avoidance alone has a similar asymptotic reward
to FedADP, since both try to avoid interference between any
two clients. By weighting updates according to their alignment
with gradient updates, FedADP avoids aggregating interfering
gradients, and IA penalizes changes to parameters that may
interfere with progress of other clients.

Our insight is that only avoiding interference suppresses
knowledge accumulation in cases where there is transfer-
able knowledge between clients. Avoiding interference pre-
maturely before transferable easy knowledge is gained would
inhibit learning. When curriculum learning is used, important
transferable easy knowledge is gained first. Then, interfer-
ence avoidance comes into action with more clients’ models
aggregating in Cascade. Clients use the common knowledge
gained in the early stages of curriculum learning to advance
the overall knowledge of the model without interfering with
other clients.

TABLE II: The asymptotic cumulative average reward, the
number of training rounds required to reach this reward,
model skewness and average test reward over out-of-training
distribution traces for Cascade with different � and without
curriculum learning

Asymptotic Rounds to Model Test
reward converge skewness reward

(higher) (lower) (lower) (higher)
Cascade � = 0 408 31 351 -69
Cascade � = 1 510 41 319 -40
Cascade � = 2 396 33 382 -70
Cascade � = 3 368 31 360 -61

IA � = 1 422 35 382 -83

VI. CONCLUDING REMARKS

In this work, we propose Cascade, a new federated re-
inforcement learning framework for ABR, powered by cur-
riculum learning and interference avoidance. We show that
aggregating all clients simultaneously may inhibit learning
as in Fedavg, and we empirically show that if we choose

clients’ models that were trained on easy environments to
aggregate, we would achieve a higher knowledge accumulation
on all tasks. In Cascade, we have clients report their difficulty
score, which is the rate at which critic loss is decreasing,
and the server aggregates fast-learning clients since they were
trained in easy environments. To avoid interference between
clients in FL, we develop a simple yet effective technique to
penalize changes to model parameters that are important to
other clients. Our experiments show that Cascade outperforms
many federated learning algorithms by 20% in asymptotic
performance and 21% in model skewness. This was at a cost
of slower convergence rate, almost 11%.
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Lower model skewness
Higher test reward



Concluding Remarks

Cascade: a new federated reinforcement learning framework 

Curriculum learning + Interference avoidance 

Outperforms FL algorithms by up to 

20% in asymptotic performance  

21% in model skewness 

At a cost of 11% more communication rounds
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