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Reinforcement Learning
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Federated Reln_forcement Learning (FRL)
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Zhuo et al., “Federated Deep Reinforcement Learning,” arXiv, 2019.



In Curriculum Learning ...
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Xia et al., “Automatic curriculum learning for learning adaptation in networking,” ACM SIGCOMM, 2022.

4



Curriculum Federated Relnforcement Learning
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Difficulty Metric

Absolute value of loss

. Higher cumulative average reward
Rate of change In loss
Faster convergence

Second derivative of loss



Inference Avoidance (1A)

Introduces a regularization term into loss

Change to weights
lz‘,model = L;(0) + ,

Important weight matrix

to penalize changes to important parameters



A Case Study:
Adaptive Bitrate Selection




Adaptive Bitrate (ABR) Selection

The objective of each client: high video quality, low rebuffering
time, low variation in video quality

NETFLIX Clients

ideo Server e .I:.
Video S Aﬁ' D

Original Encoder «—

& e [ ] | Py

Different bitrates V\QA




RL-Based Adaptive Bitrate (ABR) Selection
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Mao et al., “Neural adaptive video streaming with Pensieve,” ACM SIGCOMM, 2017.
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Experimental Setup

Server

Each client observes envwonments simulated using traces on a




Selected Experimental Results




Evaluation Metrics

W Asymptotic reward: summation of average reward in all tasks
(environments) the model was trained on

& Model Skewness |
Avg reward over task i

/ 2 (G, — Gavg)2

Number of tasks learned \
Avg.reward over Z tasks

Average test reward: average reward on traces not used during
training to test generalization
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Reward

Results of Cascade

510

410

310

210

110

10

™ FedAvg B FedADP M Cascade
450

.
Cost:

At least 11% more rounds to converge

. -

| LA

21%
14%

Training reward Test reward Model skewness

14



Generalization of Cascade
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Ablation Study
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Concluding Remarks

Cascade: a new federated reinforcement learning framework
Curriculum learning + Interference avoidance

Outperforms FL algorithms by up to
20% In asymptotic performance
21% In model skewness

At a cost of 119% more communication rounds
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